Cargando…
A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth
BACKGROUND: Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitat...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717977/ https://www.ncbi.nlm.nih.gov/pubmed/19545448 http://dx.doi.org/10.1186/1471-2407-9-198 |
_version_ | 1782169942572924928 |
---|---|
author | Mita, Hiroaki Toyota, Minoru Aoki, Fumio Akashi, Hirofumi Maruyama, Reo Sasaki, Yasushi Suzuki, Hiromu Idogawa, Masashi Kashima, Lisa Yanagihara, Kazuyoshi Fujita, Masahiro Hosokawa, Masao Kusano, Masanobu Sabau, Sorin Vasile Tatsumi, Haruyuki Imai, Kohzoh Shinomura, Yasuhisa Tokino, Takashi |
author_facet | Mita, Hiroaki Toyota, Minoru Aoki, Fumio Akashi, Hirofumi Maruyama, Reo Sasaki, Yasushi Suzuki, Hiromu Idogawa, Masashi Kashima, Lisa Yanagihara, Kazuyoshi Fujita, Masahiro Hosokawa, Masao Kusano, Masanobu Sabau, Sorin Vasile Tatsumi, Haruyuki Imai, Kohzoh Shinomura, Yasuhisa Tokino, Takashi |
author_sort | Mita, Hiroaki |
collection | PubMed |
description | BACKGROUND: Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. METHODS: DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. RESULTS: DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild-type KRAS resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity. CONCLUSION: Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of KRAS amplification and overexpression. |
format | Text |
id | pubmed-2717977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27179772009-07-30 A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth Mita, Hiroaki Toyota, Minoru Aoki, Fumio Akashi, Hirofumi Maruyama, Reo Sasaki, Yasushi Suzuki, Hiromu Idogawa, Masashi Kashima, Lisa Yanagihara, Kazuyoshi Fujita, Masahiro Hosokawa, Masao Kusano, Masanobu Sabau, Sorin Vasile Tatsumi, Haruyuki Imai, Kohzoh Shinomura, Yasuhisa Tokino, Takashi BMC Cancer Research Article BACKGROUND: Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of KRAS are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells. METHODS: DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for KRAS amplification by quantitative PCR, and investigated KRAS amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of KRAS knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively. RESULTS: DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the KRAS gene locus. Amplification of the KRAS locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). KRAS mutations were identified in two of the three cell lines in which KRAS was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased KRAS copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type KRAS, but not in cells with amplified mutant KRAS. Knock-down of KRAS in gastric cancer cells that carried amplified wild-type KRAS resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity. CONCLUSION: Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified KRAS as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of KRAS amplification and overexpression. BioMed Central 2009-06-23 /pmc/articles/PMC2717977/ /pubmed/19545448 http://dx.doi.org/10.1186/1471-2407-9-198 Text en Copyright ©2009 Mita et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mita, Hiroaki Toyota, Minoru Aoki, Fumio Akashi, Hirofumi Maruyama, Reo Sasaki, Yasushi Suzuki, Hiromu Idogawa, Masashi Kashima, Lisa Yanagihara, Kazuyoshi Fujita, Masahiro Hosokawa, Masao Kusano, Masanobu Sabau, Sorin Vasile Tatsumi, Haruyuki Imai, Kohzoh Shinomura, Yasuhisa Tokino, Takashi A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title | A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title_full | A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title_fullStr | A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title_full_unstemmed | A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title_short | A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth |
title_sort | novel method, digital genome scanning detects kras gene amplification in gastric cancers: involvement of overexpressed wild-type kras in downstream signaling and cancer cell growth |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717977/ https://www.ncbi.nlm.nih.gov/pubmed/19545448 http://dx.doi.org/10.1186/1471-2407-9-198 |
work_keys_str_mv | AT mitahiroaki anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT toyotaminoru anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT aokifumio anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT akashihirofumi anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT maruyamareo anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT sasakiyasushi anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT suzukihiromu anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT idogawamasashi anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT kashimalisa anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT yanagiharakazuyoshi anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT fujitamasahiro anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT hosokawamasao anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT kusanomasanobu anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT sabausorinvasile anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT tatsumiharuyuki anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT imaikohzoh anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT shinomurayasuhisa anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT tokinotakashi anovelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT mitahiroaki novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT toyotaminoru novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT aokifumio novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT akashihirofumi novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT maruyamareo novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT sasakiyasushi novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT suzukihiromu novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT idogawamasashi novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT kashimalisa novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT yanagiharakazuyoshi novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT fujitamasahiro novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT hosokawamasao novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT kusanomasanobu novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT sabausorinvasile novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT tatsumiharuyuki novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT imaikohzoh novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT shinomurayasuhisa novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth AT tokinotakashi novelmethoddigitalgenomescanningdetectskrasgeneamplificationingastriccancersinvolvementofoverexpressedwildtypekrasindownstreamsignalingandcancercellgrowth |