Cargando…

Wortmannin induces homotypic fusion of plant prevacuolar compartments*

Wortmannin, a specific inhibitor of phosphatidyl-inositol 3-kinase, is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. It has recently been demonstrated that wortmannin at 16.5 μM or 33 μM caused the prevacuolar compartments (P...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junqi, Cai, Yi, Miao, Yansong, Lam, Sheung Kwan, Jiang, Liwen
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718212/
https://www.ncbi.nlm.nih.gov/pubmed/19436047
http://dx.doi.org/10.1093/jxb/erp136
Descripción
Sumario:Wortmannin, a specific inhibitor of phosphatidyl-inositol 3-kinase, is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. It has recently been demonstrated that wortmannin at 16.5 μM or 33 μM caused the prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs) by their enrichment in vacuolar sorting receptor (VSRs) proteins and the BP-80 reporter, to form small vacuoles rapidly. However, the source(s) of the membrane needed for the rapid enlargement of PVCs/MVBs has been unclear. Using both confocal immunofluorescence and immunogold EM with high pressure freeze substitution of plant samples, it has been demonstrated here that wortmannin induces homotypic fusions of PVCs/MVBs thus providing an explanation for the demand for extra membrane. In addition, possible wortmannin-induced fusions between the trans-Golgi network (TGN) and PVC, as well as between the small internal vesicles and PVC membrane, were also observed and they may also contribute to the membranes needed for PVC enlargement. In contrast to mammalian cells and yeast, wortmannin-induced fusion of PVCs appears to be unique to plants.