Cargando…
The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models
We consider the application of Markov chain Monte Carlo (MCMC) estimation methods to random-effects models and in particular the family of discrete time survival models. Survival models can be used in many situations in the medical and social sciences and we illustrate their use through two examples...
Autores principales: | Browne, William J, Steele, Fiona, Golalizadeh, Mousa, Green, Martin J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718325/ https://www.ncbi.nlm.nih.gov/pubmed/19649268 http://dx.doi.org/10.1111/j.1467-985X.2009.00586.x |
Ejemplares similares
-
Bayesian Markov Chain Monte Carlo for reparameterized Stochastic volatility models using Asian FX rates during Covid-19
por: Poonvoralak, Wantanee
Publicado: (2022) -
The effect of area of residence over the life course on subsequent mortality
por: Leyland, Alastair H, et al.
Publicado: (2009) -
Inference for binomial probability based on dependent Bernoulli random variables with applications to meta‐analysis and group level studies
por: Bakbergenuly, Ilyas, et al.
Publicado: (2016) -
A simple introduction to Markov Chain Monte–Carlo sampling
por: van Ravenzwaaij, Don, et al.
Publicado: (2016) -
Markov chain Monte Carlo in practice
por: Gilks, W R, et al.
Publicado: (1995)