Cargando…
Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment
Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is ti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718617/ https://www.ncbi.nlm.nih.gov/pubmed/19707265 http://dx.doi.org/10.1371/journal.pbio.1000177 |
_version_ | 1782170000207904768 |
---|---|
author | Tull, Samantha P. Yates, Clara M. Maskrey, Benjamin H. O'Donnell, Valerie B. Madden, Jackie Grimble, Robert F. Calder, Philip C. Nash, Gerard B. Rainger, G. Ed. |
author_facet | Tull, Samantha P. Yates, Clara M. Maskrey, Benjamin H. O'Donnell, Valerie B. Madden, Jackie Grimble, Robert F. Calder, Philip C. Nash, Gerard B. Rainger, G. Ed. |
author_sort | Tull, Samantha P. |
collection | PubMed |
description | Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-α, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs. |
format | Text |
id | pubmed-2718617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27186172009-08-25 Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment Tull, Samantha P. Yates, Clara M. Maskrey, Benjamin H. O'Donnell, Valerie B. Madden, Jackie Grimble, Robert F. Calder, Philip C. Nash, Gerard B. Rainger, G. Ed. PLoS Biol Research Article Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-α, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs. Public Library of Science 2009-08-25 /pmc/articles/PMC2718617/ /pubmed/19707265 http://dx.doi.org/10.1371/journal.pbio.1000177 Text en Tull et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tull, Samantha P. Yates, Clara M. Maskrey, Benjamin H. O'Donnell, Valerie B. Madden, Jackie Grimble, Robert F. Calder, Philip C. Nash, Gerard B. Rainger, G. Ed. Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title | Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title_full | Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title_fullStr | Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title_full_unstemmed | Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title_short | Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment |
title_sort | omega-3 fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718617/ https://www.ncbi.nlm.nih.gov/pubmed/19707265 http://dx.doi.org/10.1371/journal.pbio.1000177 |
work_keys_str_mv | AT tullsamanthap omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT yatesclaram omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT maskreybenjaminh omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT odonnellvalerieb omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT maddenjackie omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT grimblerobertf omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT calderphilipc omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT nashgerardb omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment AT raingerged omega3fattyacidsandinflammationnovelinteractionsrevealanewstepinneutrophilrecruitment |