Cargando…
Classification and feature selection algorithms for multi-class CGH data
Recurrent chromosomal alterations provide cytological and molecular positions for the diagnosis and prognosis of cancer. Comparative genomic hybridization (CGH) has been useful in understanding these alterations in cancerous cells. CGH datasets consist of samples that are represented by large dimens...
Autores principales: | Liu, Jun, Ranka, Sanjay, Kahveci, Tamer |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718623/ https://www.ncbi.nlm.nih.gov/pubmed/18586749 http://dx.doi.org/10.1093/bioinformatics/btn145 |
Ejemplares similares
-
Classification of arrayCGH data using fused SVM
por: Rapaport, Franck, et al.
Publicado: (2008) -
Algorithm for backrub motions in protein design
por: Georgiev, Ivelin, et al.
Publicado: (2008) -
Alignment and classification of time series gene expression in clinical studies
por: Lin, Tien-ho, et al.
Publicado: (2008) -
MicroRNA prediction with a novel ranking algorithm based on random walks
por: Xu, Yunpen, et al.
Publicado: (2008) -
Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space
por: Loewenstein, Yaniv, et al.
Publicado: (2008)