Cargando…
Alignment and classification of time series gene expression in clinical studies
Motivation: Classification of tissues using static gene-expression data has received considerable attention. Recently, a growing number of expression datasets are measured as a time series. Methods that are specifically designed for this temporal data can both utilize its unique features (temporal e...
Autores principales: | Lin, Tien-ho, Kaminski, Naftali, Bar-Joseph, Ziv |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718630/ https://www.ncbi.nlm.nih.gov/pubmed/18586707 http://dx.doi.org/10.1093/bioinformatics/btn152 |
Ejemplares similares
-
Protein complex identification by supervised graph local clustering
por: Qi, Yanjun, et al.
Publicado: (2008) -
A max-margin model for efficient simultaneous alignment and folding of RNA sequences
por: Do, Chuong B., et al.
Publicado: (2008) -
Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences
por: Ward, Lucas D., et al.
Publicado: (2008) -
Classification of arrayCGH data using fused SVM
por: Rapaport, Franck, et al.
Publicado: (2008) -
Classification and feature selection algorithms for multi-class CGH data
por: Liu, Jun, et al.
Publicado: (2008)