Cargando…
Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
Motivation: The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently. Results: In this article, we characterize...
Autores principales: | Yamanishi, Yoshihiro, Araki, Michihiro, Gutteridge, Alex, Honda, Wataru, Kanehisa, Minoru |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718640/ https://www.ncbi.nlm.nih.gov/pubmed/18586719 http://dx.doi.org/10.1093/bioinformatics/btn162 |
Ejemplares similares
-
Detection of IUPAC and IUPAC-like chemical names
por: Klinger, Roman, et al.
Publicado: (2008) -
Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space
por: Loewenstein, Yaniv, et al.
Publicado: (2008) -
BLASTing small molecules—statistics and extreme statistics of chemical similarity scores
por: Baldi, Pierre, et al.
Publicado: (2008) -
Identifying functional modules in protein–protein interaction networks: an integrated exact approach
por: Dittrich, Marcus T., et al.
Publicado: (2008) -
Integrating high dimensional bi-directional parsing models for gene mention tagging
por: Hsu, Chun-Nan, et al.
Publicado: (2008)