Cargando…
Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution
In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error...
Autores principales: | Siegal-Gaskins, Dan, Ash, Joshua N., Crosson, Sean |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718844/ https://www.ncbi.nlm.nih.gov/pubmed/19680537 http://dx.doi.org/10.1371/journal.pcbi.1000460 |
Ejemplares similares
-
Statistical Deconvolution for Inference of Infection Time Series
por: Miller, Andrew C., et al.
Publicado: (2022) -
Dynamics-informed deconvolutional neural networks for super-resolution identification of regime changes in epidemiological time series
por: Vilar, Jose M. G., et al.
Publicado: (2023) -
Deconvolution of Acoustic Emission and Other Causal Time
Series
por: Simmons, John A.
Publicado: (1991) -
Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation
por: He, Xinzi, et al.
Publicado: (2018) -
Sparse deconvolution of high-density super-resolution images
por: Hugelier, Siewert, et al.
Publicado: (2016)