Cargando…
OHMM: a Hidden Markov Model accurately predicting the occupancy of a transcription factor with a self-overlapping binding motif
BACKGROUND: DNA sequence binding motifs for several important transcription factors happen to be self-overlapping. Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites. Moreover, most methods use arbitrary thresholds and fail to provide...
Autores principales: | Drawid, Amar, Gupta, Nupur, Nagaraj, Vijayalakshmi H, Gélinas, Céline, Sengupta, Anirvan M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718928/ https://www.ncbi.nlm.nih.gov/pubmed/19583839 http://dx.doi.org/10.1186/1471-2105-10-208 |
Ejemplares similares
-
Using hidden Markov models to investigate G-quadruplex motifs in genomic sequences
por: Yano, Masato, et al.
Publicado: (2014) -
HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons
por: Prytuliak, Roman, et al.
Publicado: (2017) -
HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons
por: Prytuliak, Roman, et al.
Publicado: (2017) -
Riboswitch Detection Using Profile Hidden Markov Models
por: Singh, Payal, et al.
Publicado: (2009) -
Recognition of beta-structural motifs using hidden Markov models trained with simulated evolution
por: Kumar, Anoop, et al.
Publicado: (2010)