Cargando…

Regulation of the apoptosis-inducing kinase DRAK2 by cyclooxygenase-2 in colorectal cancer

BACKGROUND: Cyclooxygenase-2 (COX-2) is over-expressed in colorectal cancer (CRC), rendering tumour cells resistant to apoptosis. Selective COX-2 inhibition is effective in CRC prevention, although having adverse cardiovascular effects, thus focus has shifted to downstream pathways. METHODS: Microar...

Descripción completa

Detalles Bibliográficos
Autores principales: Doherty, G A, Byrne, S M, Austin, S C, Scully, G M, Sadlier, D M, Neilan, T G, Kay, E W, Murray, F E, Fitzgerald, D J
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720240/
https://www.ncbi.nlm.nih.gov/pubmed/19638987
http://dx.doi.org/10.1038/sj.bjc.6605144
Descripción
Sumario:BACKGROUND: Cyclooxygenase-2 (COX-2) is over-expressed in colorectal cancer (CRC), rendering tumour cells resistant to apoptosis. Selective COX-2 inhibition is effective in CRC prevention, although having adverse cardiovascular effects, thus focus has shifted to downstream pathways. METHODS: Microarray experiments identified genes regulated by COX-2 in HCA7 CRC cells. In vitro and in vivo regulation of DRAK2 (DAP kinase-related apoptosis-inducing kinase 2 or STK17β, an apoptosis-inducing kinase) by COX-2 was validated by qRT-PCR. RESULTS: Inhibition of COX-2 induced apoptosis and enhanced DRAK2 expression in HCA7 cells (4.4-fold increase at 4 h by qRT-PCR, P=0.001), an effect prevented by co-administration of PGE(2). DRAK2 levels were suppressed in a panel of human colorectal tumours (n=10) compared to normal mucosa, and showed inverse correlation with COX-2 expression (R=−0.68, R(2)=0.46, P=0.03). Administration of the selective COX-2 inhibitor rofecoxib to patients with CRC (n=5) induced DRAK2 expression in tumours (2.5-fold increase, P=0.01). In vitro silencing of DRAK2 by RNAi enhanced CRC cell survival following COX-2 inhibitor treatment. CONCLUSION: DRAK2 is a serine–threonine kinase implicated in the regulation of apoptosis and is negatively regulated by COX-2 in vitro and in vivo, suggesting a novel mechanism for the effect of COX-2 on cancer cell survival.