Cargando…

Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor

BACKGROUND: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Biaoyang, Wang, Jun, Hong, Xu, Yan, Xiaowei, Hwang, Daehee, Cho, Ji-Hoon, Yi, Danielle, Utleg, Angelita G., Fang, Xuefeng, Schones, Dustin E., Zhao, Keji, Omenn, Gilbert S., Hood, Leroy
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720376/
https://www.ncbi.nlm.nih.gov/pubmed/19668381
http://dx.doi.org/10.1371/journal.pone.0006589
_version_ 1782170128256860160
author Lin, Biaoyang
Wang, Jun
Hong, Xu
Yan, Xiaowei
Hwang, Daehee
Cho, Ji-Hoon
Yi, Danielle
Utleg, Angelita G.
Fang, Xuefeng
Schones, Dustin E.
Zhao, Keji
Omenn, Gilbert S.
Hood, Leroy
author_facet Lin, Biaoyang
Wang, Jun
Hong, Xu
Yan, Xiaowei
Hwang, Daehee
Cho, Ji-Hoon
Yi, Danielle
Utleg, Angelita G.
Fang, Xuefeng
Schones, Dustin E.
Zhao, Keji
Omenn, Gilbert S.
Hood, Leroy
author_sort Lin, Biaoyang
collection PubMed
description BACKGROUND: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. METHODOLOGY/PRINCIPAL FINDINGS: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4% (638 of 2,849) can be mapped to within 2 kb of the transcription start site (TSS). Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629). In contrast, only about 2.9% (190/6,629) of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database), which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which include TEF1 (Transcriptional enhancer factor), GATA (GATA transcription factors), OCT (octamer transcription factors) and PU1 (PU.1 transcription factor). CONCLUSIONS/SIGNIFICANCE: Our data provide a valuable data set in understanding the molecular basis for growth inhibition response program of the AR in prostate cancer cells, which can be exploited for developing novel prostate cancer therapeutic strategies.
format Text
id pubmed-2720376
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-27203762009-08-11 Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor Lin, Biaoyang Wang, Jun Hong, Xu Yan, Xiaowei Hwang, Daehee Cho, Ji-Hoon Yi, Danielle Utleg, Angelita G. Fang, Xuefeng Schones, Dustin E. Zhao, Keji Omenn, Gilbert S. Hood, Leroy PLoS One Research Article BACKGROUND: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. METHODOLOGY/PRINCIPAL FINDINGS: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4% (638 of 2,849) can be mapped to within 2 kb of the transcription start site (TSS). Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629). In contrast, only about 2.9% (190/6,629) of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database), which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which include TEF1 (Transcriptional enhancer factor), GATA (GATA transcription factors), OCT (octamer transcription factors) and PU1 (PU.1 transcription factor). CONCLUSIONS/SIGNIFICANCE: Our data provide a valuable data set in understanding the molecular basis for growth inhibition response program of the AR in prostate cancer cells, which can be exploited for developing novel prostate cancer therapeutic strategies. Public Library of Science 2009-08-11 /pmc/articles/PMC2720376/ /pubmed/19668381 http://dx.doi.org/10.1371/journal.pone.0006589 Text en Lin et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lin, Biaoyang
Wang, Jun
Hong, Xu
Yan, Xiaowei
Hwang, Daehee
Cho, Ji-Hoon
Yi, Danielle
Utleg, Angelita G.
Fang, Xuefeng
Schones, Dustin E.
Zhao, Keji
Omenn, Gilbert S.
Hood, Leroy
Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title_full Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title_fullStr Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title_full_unstemmed Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title_short Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
title_sort integrated expression profiling and chip-seq analyses of the growth inhibition response program of the androgen receptor
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720376/
https://www.ncbi.nlm.nih.gov/pubmed/19668381
http://dx.doi.org/10.1371/journal.pone.0006589
work_keys_str_mv AT linbiaoyang integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT wangjun integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT hongxu integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT yanxiaowei integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT hwangdaehee integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT chojihoon integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT yidanielle integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT utlegangelitag integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT fangxuefeng integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT schonesdustine integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT zhaokeji integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT omenngilberts integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor
AT hoodleroy integratedexpressionprofilingandchipseqanalysesofthegrowthinhibitionresponseprogramoftheandrogenreceptor