Cargando…
HCV genotyping using statistical classification approach
The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate determination of viral genotype could provide direction in the clinical management of patients with ch...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720937/ https://www.ncbi.nlm.nih.gov/pubmed/19586537 http://dx.doi.org/10.1186/1423-0127-16-62 |
_version_ | 1782170152774664192 |
---|---|
author | Qiu, Ping Cai, Xiao-Yan Ding, Wei Zhang, Qing Norris, Ellie D Greene, Jonathan R |
author_facet | Qiu, Ping Cai, Xiao-Yan Ding, Wei Zhang, Qing Norris, Ellie D Greene, Jonathan R |
author_sort | Qiu, Ping |
collection | PubMed |
description | The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate determination of viral genotype could provide direction in the clinical management of patients with chronic HCV infections. Using publicly available HCV nucleotide sequences, we built a global Position Weight Matrix (PWM) for the HCV genome. Based on the PWM, a set of genotype specific nucleotide sequence "signatures" were selected from the 5' NCR, CORE, E1, and NS5B regions of the HCV genome. We evaluated the predictive power of these signatures for predicting the most common HCV genotypes and subtypes. We observed that nucleotide sequence signatures selected from NS5B and E1 regions generally demonstrated stronger discriminant power in differentiating major HCV genotypes and subtypes than that from 5' NCR and CORE regions. Two discriminant methods were used to build predictive models. Through 10 fold cross validation, over 99% prediction accuracy was achieved using both support vector machine (SVM) and random forest based classification methods in a dataset of 1134 sequences for NS5B and 947 sequences for E1. Prediction accuracy for each genotype is also reported. |
format | Text |
id | pubmed-2720937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27209372009-08-05 HCV genotyping using statistical classification approach Qiu, Ping Cai, Xiao-Yan Ding, Wei Zhang, Qing Norris, Ellie D Greene, Jonathan R J Biomed Sci Research The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate determination of viral genotype could provide direction in the clinical management of patients with chronic HCV infections. Using publicly available HCV nucleotide sequences, we built a global Position Weight Matrix (PWM) for the HCV genome. Based on the PWM, a set of genotype specific nucleotide sequence "signatures" were selected from the 5' NCR, CORE, E1, and NS5B regions of the HCV genome. We evaluated the predictive power of these signatures for predicting the most common HCV genotypes and subtypes. We observed that nucleotide sequence signatures selected from NS5B and E1 regions generally demonstrated stronger discriminant power in differentiating major HCV genotypes and subtypes than that from 5' NCR and CORE regions. Two discriminant methods were used to build predictive models. Through 10 fold cross validation, over 99% prediction accuracy was achieved using both support vector machine (SVM) and random forest based classification methods in a dataset of 1134 sequences for NS5B and 947 sequences for E1. Prediction accuracy for each genotype is also reported. BioMed Central 2009-07-08 /pmc/articles/PMC2720937/ /pubmed/19586537 http://dx.doi.org/10.1186/1423-0127-16-62 Text en Copyright © 2009 Qiu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Qiu, Ping Cai, Xiao-Yan Ding, Wei Zhang, Qing Norris, Ellie D Greene, Jonathan R HCV genotyping using statistical classification approach |
title | HCV genotyping using statistical classification approach |
title_full | HCV genotyping using statistical classification approach |
title_fullStr | HCV genotyping using statistical classification approach |
title_full_unstemmed | HCV genotyping using statistical classification approach |
title_short | HCV genotyping using statistical classification approach |
title_sort | hcv genotyping using statistical classification approach |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720937/ https://www.ncbi.nlm.nih.gov/pubmed/19586537 http://dx.doi.org/10.1186/1423-0127-16-62 |
work_keys_str_mv | AT qiuping hcvgenotypingusingstatisticalclassificationapproach AT caixiaoyan hcvgenotypingusingstatisticalclassificationapproach AT dingwei hcvgenotypingusingstatisticalclassificationapproach AT zhangqing hcvgenotypingusingstatisticalclassificationapproach AT norrisellied hcvgenotypingusingstatisticalclassificationapproach AT greenejonathanr hcvgenotypingusingstatisticalclassificationapproach |