Cargando…

Information Encoding and Reconstruction from the Phase of Action Potentials

Fundamental questions in neural coding are how neurons encode, transfer, and reconstruct information from the pattern of action potentials (APs) exchanged between different brain structures. We propose a general model of neural coding where neurons encode information by the phase of their APs relati...

Descripción completa

Detalles Bibliográficos
Autor principal: Nadasdy, Zoltan
Formato: Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722907/
https://www.ncbi.nlm.nih.gov/pubmed/19668700
http://dx.doi.org/10.3389/neuro.06.006.2009
Descripción
Sumario:Fundamental questions in neural coding are how neurons encode, transfer, and reconstruct information from the pattern of action potentials (APs) exchanged between different brain structures. We propose a general model of neural coding where neurons encode information by the phase of their APs relative to their subthreshold membrane oscillations. We demonstrate by means of simulations that AP phase retains the spatial and temporal content of the input under the assumption that the membrane potential oscillations are coherent across neurons and between structures and have a constant spatial phase gradient. The model explains many unresolved physiological observations and makes a number of concrete, testable predictions about the relationship between APs, local field potentials, and subthreshold membrane oscillations, and provides an estimate of the spatio-temporal precision of neuronal information processing.