Cargando…
Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold
Information is transmitted in the brain through various kinds of neurons that respond differently to the same signal. Full characteristics including cognitive functions of the brain should ultimately be comprehended by building simulators capable of precisely mirroring spike responses of a variety o...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722979/ https://www.ncbi.nlm.nih.gov/pubmed/19668702 http://dx.doi.org/10.3389/neuro.10.009.2009 |
_version_ | 1782170342763003904 |
---|---|
author | Kobayashi, Ryota Tsubo, Yasuhiro Shinomoto, Shigeru |
author_facet | Kobayashi, Ryota Tsubo, Yasuhiro Shinomoto, Shigeru |
author_sort | Kobayashi, Ryota |
collection | PubMed |
description | Information is transmitted in the brain through various kinds of neurons that respond differently to the same signal. Full characteristics including cognitive functions of the brain should ultimately be comprehended by building simulators capable of precisely mirroring spike responses of a variety of neurons. Neuronal modeling that had remained on a qualitative level has recently advanced to a quantitative level, but is still incapable of accurately predicting biological data and requires high computational cost. In this study, we devised a simple, fast computational model that can be tailored to any cortical neuron not only for reproducing but also for predicting a variety of spike responses to greatly fluctuating currents. The key features of this model are a multi-timescale adaptive threshold predictor and a nonresetting leaky integrator. This model is capable of reproducing a rich variety of neuronal spike responses, including regular spiking, intrinsic bursting, fast spiking, and chattering, by adjusting only three adaptive threshold parameters. This model can express a continuous variety of the firing characteristics in a three-dimensional parameter space rather than just those identified in the conventional discrete categorization. Both high flexibility and low computational cost would help to model the real brain function faithfully and examine how network properties may be influenced by the distributed characteristics of component neurons. |
format | Text |
id | pubmed-2722979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-27229792009-08-10 Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold Kobayashi, Ryota Tsubo, Yasuhiro Shinomoto, Shigeru Front Comput Neurosci Neuroscience Information is transmitted in the brain through various kinds of neurons that respond differently to the same signal. Full characteristics including cognitive functions of the brain should ultimately be comprehended by building simulators capable of precisely mirroring spike responses of a variety of neurons. Neuronal modeling that had remained on a qualitative level has recently advanced to a quantitative level, but is still incapable of accurately predicting biological data and requires high computational cost. In this study, we devised a simple, fast computational model that can be tailored to any cortical neuron not only for reproducing but also for predicting a variety of spike responses to greatly fluctuating currents. The key features of this model are a multi-timescale adaptive threshold predictor and a nonresetting leaky integrator. This model is capable of reproducing a rich variety of neuronal spike responses, including regular spiking, intrinsic bursting, fast spiking, and chattering, by adjusting only three adaptive threshold parameters. This model can express a continuous variety of the firing characteristics in a three-dimensional parameter space rather than just those identified in the conventional discrete categorization. Both high flexibility and low computational cost would help to model the real brain function faithfully and examine how network properties may be influenced by the distributed characteristics of component neurons. Frontiers Research Foundation 2009-07-30 /pmc/articles/PMC2722979/ /pubmed/19668702 http://dx.doi.org/10.3389/neuro.10.009.2009 Text en Copyright © 2009 Kobayashi, Tsubo and Shinomoto. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
spellingShingle | Neuroscience Kobayashi, Ryota Tsubo, Yasuhiro Shinomoto, Shigeru Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title | Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title_full | Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title_fullStr | Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title_full_unstemmed | Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title_short | Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold |
title_sort | made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722979/ https://www.ncbi.nlm.nih.gov/pubmed/19668702 http://dx.doi.org/10.3389/neuro.10.009.2009 |
work_keys_str_mv | AT kobayashiryota madetoorderspikingneuronmodelequippedwithamultitimescaleadaptivethreshold AT tsuboyasuhiro madetoorderspikingneuronmodelequippedwithamultitimescaleadaptivethreshold AT shinomotoshigeru madetoorderspikingneuronmodelequippedwithamultitimescaleadaptivethreshold |