Cargando…
Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP
AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHOD...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723663/ https://www.ncbi.nlm.nih.gov/pubmed/19575178 http://dx.doi.org/10.1007/s00125-009-1432-6 |
_version_ | 1782170367972868096 |
---|---|
author | van der Plas, M. J. A. Baldry, M. van Dissel, J. T. Jukema, G. N. Nibbering, P. H. |
author_facet | van der Plas, M. J. A. Baldry, M. van Dissel, J. T. Jukema, G. N. Nibbering, P. H. |
author_sort | van der Plas, M. J. A. |
collection | PubMed |
description | AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHODS: Freshly isolated monocytes were incubated with a range of secretions for 1 h and then stimulated with lipopolysaccharides (range 0–100 ng/ml) or lipoteichoic acid (range 0–5 µg/ml) for 18 h. The expression of cell surface molecules, cytokine and chemokine levels in culture supernatants, cell viability, chemotaxis, and phagocytosis and killing of Staphylococcus aureus were measured. RESULTS: Maggot secretions dose-dependently inhibited production of the pro-inflammatory cytokines TNF-α, IL-12p40 and macrophage migration inhibitory factor by lipopolysaccharides- and lipoteichoic acid-stimulated monocytes, while enhancing production of the anti-inflammatory cytokine IL-10. Expression of cell surface receptors involved in pathogen recognition remained unaffected by secretions. In addition, maggot secretions altered the chemokine profile of monocytes by downregulating macrophage inflammatory protein-1β and upregulating monocyte chemoattractant protein-1 and IL-8. Nevertheless, chemotactic responses of monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-cyclic AMPS inhibited the effects of secretions. CONCLUSIONS/INTERPRETATION: Maggot secretions inhibit the pro-inflammatory responses of human monocytes through a cyclic AMP-dependent mechanism. Regulation of the inflammatory processes by maggots contributes to their beneficial effects on chronic wounds. |
format | Text |
id | pubmed-2723663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-27236632009-08-10 Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP van der Plas, M. J. A. Baldry, M. van Dissel, J. T. Jukema, G. N. Nibbering, P. H. Diabetologia Article AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHODS: Freshly isolated monocytes were incubated with a range of secretions for 1 h and then stimulated with lipopolysaccharides (range 0–100 ng/ml) or lipoteichoic acid (range 0–5 µg/ml) for 18 h. The expression of cell surface molecules, cytokine and chemokine levels in culture supernatants, cell viability, chemotaxis, and phagocytosis and killing of Staphylococcus aureus were measured. RESULTS: Maggot secretions dose-dependently inhibited production of the pro-inflammatory cytokines TNF-α, IL-12p40 and macrophage migration inhibitory factor by lipopolysaccharides- and lipoteichoic acid-stimulated monocytes, while enhancing production of the anti-inflammatory cytokine IL-10. Expression of cell surface receptors involved in pathogen recognition remained unaffected by secretions. In addition, maggot secretions altered the chemokine profile of monocytes by downregulating macrophage inflammatory protein-1β and upregulating monocyte chemoattractant protein-1 and IL-8. Nevertheless, chemotactic responses of monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-cyclic AMPS inhibited the effects of secretions. CONCLUSIONS/INTERPRETATION: Maggot secretions inhibit the pro-inflammatory responses of human monocytes through a cyclic AMP-dependent mechanism. Regulation of the inflammatory processes by maggots contributes to their beneficial effects on chronic wounds. Springer-Verlag 2009-07-03 2009-09 /pmc/articles/PMC2723663/ /pubmed/19575178 http://dx.doi.org/10.1007/s00125-009-1432-6 Text en © The Author(s) 2009 |
spellingShingle | Article van der Plas, M. J. A. Baldry, M. van Dissel, J. T. Jukema, G. N. Nibbering, P. H. Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title | Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title_full | Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title_fullStr | Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title_full_unstemmed | Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title_short | Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP |
title_sort | maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic amp |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723663/ https://www.ncbi.nlm.nih.gov/pubmed/19575178 http://dx.doi.org/10.1007/s00125-009-1432-6 |
work_keys_str_mv | AT vanderplasmja maggotsecretionssuppressproinflammatoryresponsesofhumanmonocytesthroughelevationofcyclicamp AT baldrym maggotsecretionssuppressproinflammatoryresponsesofhumanmonocytesthroughelevationofcyclicamp AT vandisseljt maggotsecretionssuppressproinflammatoryresponsesofhumanmonocytesthroughelevationofcyclicamp AT jukemagn maggotsecretionssuppressproinflammatoryresponsesofhumanmonocytesthroughelevationofcyclicamp AT nibberingph maggotsecretionssuppressproinflammatoryresponsesofhumanmonocytesthroughelevationofcyclicamp |