Cargando…
Predicting Cell Cycle Regulated Genes by Causal Interactions
The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e.g., the transcriptional regulatory o...
Autores principales: | Emmert-Streib, Frank, Dehmer, Matthias |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723924/ https://www.ncbi.nlm.nih.gov/pubmed/19688096 http://dx.doi.org/10.1371/journal.pone.0006633 |
Ejemplares similares
-
Hierarchical coordination of periodic genes in the cell cycle of Saccharomyces cerevisiae
por: Emmert-Streib, Frank, et al.
Publicado: (2009) -
Data-Driven Computational Social Network Science: Predictive and Inferential Models for Web-Enabled Scientific Discoveries
por: Emmert-Streib, Frank, et al.
Publicado: (2021) -
Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders
por: Smolander, Johannes, et al.
Publicado: (2019) -
Information processing in the transcriptional regulatory network of yeast: Functional robustness
por: Emmert-Streib, Frank, et al.
Publicado: (2009) -
Exploring Statistical and Population Aspects of Network Complexity
por: Emmert-Streib, Frank, et al.
Publicado: (2012)