Cargando…

The flexibility of locally melted DNA

Protein-bound duplex DNA is often bent or kinked. Yet, quantification of intrinsic DNA bending that might lead to such protein interactions remains enigmatic. DNA cyclization experiments have indicated that DNA may form sharp bends more easily than predicted by the established worm-like chain (WLC)...

Descripción completa

Detalles Bibliográficos
Autores principales: Forties, Robert A., Bundschuh, Ralf, Poirier, Michael G.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724272/
https://www.ncbi.nlm.nih.gov/pubmed/19487242
http://dx.doi.org/10.1093/nar/gkp442
Descripción
Sumario:Protein-bound duplex DNA is often bent or kinked. Yet, quantification of intrinsic DNA bending that might lead to such protein interactions remains enigmatic. DNA cyclization experiments have indicated that DNA may form sharp bends more easily than predicted by the established worm-like chain (WLC) model. One proposed explanation suggests that local melting of a few base pairs introduces flexible hinges. We have expanded this model to incorporate sequence and temperature dependence of the local melting, and tested it for three sequences at temperatures from 23°C to 42°C. We find that small melted bubbles are significantly more flexible than double-stranded DNA and can alter DNA flexibility at physiological temperatures. However, these bubbles are not flexible enough to explain the recently observed very sharp bends in DNA.