Cargando…

Kinetic and thermodynamic characterization of single-mismatch discrimination using single-molecule imaging

A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the bind...

Descripción completa

Detalles Bibliográficos
Autores principales: Gunnarsson, Anders, Jönsson, Peter, Zhdanov, Vladimir P., Höök, Fredrik
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724293/
https://www.ncbi.nlm.nih.gov/pubmed/19509313
http://dx.doi.org/10.1093/nar/gkp487
Descripción
Sumario:A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (K(d) < 1 nM, k(off) < 0.01 s(−1)) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1–100 pM and 23–46°C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.