Cargando…
A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
BACKGROUND: Regularized regression methods such as principal component or partial least squares regression perform well in learning tasks on high dimensional spectral data, but cannot explicitly eliminate irrelevant features. The random forest classifier with its associated Gini feature importance,...
Autores principales: | Menze, Bjoern H, Kelm, B Michael, Masuch, Ralf, Himmelreich, Uwe, Bachert, Peter, Petrich, Wolfgang, Hamprecht, Fred A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724423/ https://www.ncbi.nlm.nih.gov/pubmed/19591666 http://dx.doi.org/10.1186/1471-2105-10-213 |
Ejemplares similares
-
The revival of the Gini importance?
por: Nembrini, Stefano, et al.
Publicado: (2018) -
Spectral Gini Index for Quantifying the Depth of Consciousness
por: You, Kyung-Jin, et al.
Publicado: (2016) -
Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach
por: Dunne, Robert, et al.
Publicado: (2023) -
The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data
por: Wright Muelas, Marina, et al.
Publicado: (2019) -
Chemometrics and Standards
por: Currie, L. A.
Publicado: (1988)