Cargando…
Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise
The effects of noise on neuronal dynamical systems are of much current interest. Here, we investigate noise-induced changes in the rhythmic firing activity of single Hodgkin–Huxley neurons. With additive input current, there is, in the absence of noise, a critical mean value µ = µ(c) above which sus...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727367/ https://www.ncbi.nlm.nih.gov/pubmed/19513592 http://dx.doi.org/10.1007/s00114-009-0570-5 |
_version_ | 1782170671281864704 |
---|---|
author | Gutkin, Boris S. Jost, Jürgen Tuckwell, Henry C. |
author_facet | Gutkin, Boris S. Jost, Jürgen Tuckwell, Henry C. |
author_sort | Gutkin, Boris S. |
collection | PubMed |
description | The effects of noise on neuronal dynamical systems are of much current interest. Here, we investigate noise-induced changes in the rhythmic firing activity of single Hodgkin–Huxley neurons. With additive input current, there is, in the absence of noise, a critical mean value µ = µ(c) above which sustained periodic firing occurs. With initial conditions as resting values, for a range of values of the mean µ near the critical value, we have found that the firing rate is greatly reduced by noise, even of quite small amplitudes. Furthermore, the firing rate may undergo a pronounced minimum as the noise increases. This behavior has the opposite character to stochastic resonance and coherence resonance. We found that these phenomena occurred even when the initial conditions were chosen randomly or when the noise was switched on at a random time, indicating the robustness of the results. We also examined the effects of conductance-based noise on Hodgkin–Huxley neurons and obtained similar results, leading to the conclusion that the phenomena occur across a wide range of neuronal dynamical systems. Further, these phenomena will occur in diverse applications where a stable limit cycle coexists with a stable focus. |
format | Text |
id | pubmed-2727367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-27273672009-08-18 Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise Gutkin, Boris S. Jost, Jürgen Tuckwell, Henry C. Naturwissenschaften Original Paper The effects of noise on neuronal dynamical systems are of much current interest. Here, we investigate noise-induced changes in the rhythmic firing activity of single Hodgkin–Huxley neurons. With additive input current, there is, in the absence of noise, a critical mean value µ = µ(c) above which sustained periodic firing occurs. With initial conditions as resting values, for a range of values of the mean µ near the critical value, we have found that the firing rate is greatly reduced by noise, even of quite small amplitudes. Furthermore, the firing rate may undergo a pronounced minimum as the noise increases. This behavior has the opposite character to stochastic resonance and coherence resonance. We found that these phenomena occurred even when the initial conditions were chosen randomly or when the noise was switched on at a random time, indicating the robustness of the results. We also examined the effects of conductance-based noise on Hodgkin–Huxley neurons and obtained similar results, leading to the conclusion that the phenomena occur across a wide range of neuronal dynamical systems. Further, these phenomena will occur in diverse applications where a stable limit cycle coexists with a stable focus. Springer-Verlag 2009-06-10 2009-09 /pmc/articles/PMC2727367/ /pubmed/19513592 http://dx.doi.org/10.1007/s00114-009-0570-5 Text en © The Author(s) 2009 |
spellingShingle | Original Paper Gutkin, Boris S. Jost, Jürgen Tuckwell, Henry C. Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title | Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title_full | Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title_fullStr | Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title_full_unstemmed | Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title_short | Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
title_sort | inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727367/ https://www.ncbi.nlm.nih.gov/pubmed/19513592 http://dx.doi.org/10.1007/s00114-009-0570-5 |
work_keys_str_mv | AT gutkinboriss inhibitionofrhythmicneuralspikingbynoisetheoccurrenceofaminimuminactivitywithincreasingnoise AT jostjurgen inhibitionofrhythmicneuralspikingbynoisetheoccurrenceofaminimuminactivitywithincreasingnoise AT tuckwellhenryc inhibitionofrhythmicneuralspikingbynoisetheoccurrenceofaminimuminactivitywithincreasingnoise |