Cargando…
Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines
BACKGROUND: Multiple imputation (MI) provides an effective approach to handle missing covariate data within prognostic modelling studies, as it can properly account for the missing data uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling techniques to obt...
Autores principales: | Marshall, Andrea, Altman, Douglas G, Holder, Roger L, Royston, Patrick |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727536/ https://www.ncbi.nlm.nih.gov/pubmed/19638200 http://dx.doi.org/10.1186/1471-2288-9-57 |
Ejemplares similares
-
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Combining fractional polynomial model building with multiple imputation
por: Morris, Tim P., et al.
Publicado: (2015) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Tuning multiple imputation by predictive mean matching and local residual draws
por: Morris, Tim P, et al.
Publicado: (2014)