Cargando…
Chlamydia trachomatis Alters Iron-Regulatory Protein-1 Binding Capacity and Modulates Cellular Iron Homeostasis in HeLa-229 Cells
Chlamydia trachomatis (CT) is the leading cause of diseases related to reproductive health and iron plays important role in chlamydial pathogenesis. Iron homeostasis in chlamydia-infected cells is not clear thus far. This study shows that expression of the transferrin receptor (TfR) is downregulated...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727623/ https://www.ncbi.nlm.nih.gov/pubmed/19688112 http://dx.doi.org/10.1155/2009/342032 |
Sumario: | Chlamydia trachomatis (CT) is the leading cause of diseases related to reproductive health and iron plays important role in chlamydial pathogenesis. Iron homeostasis in chlamydia-infected cells is not clear thus far. This study shows that expression of the transferrin receptor (TfR) is downregulated, whereas expression of the ferritin heavy chain is upregulated in CT-infected HeLa-229 cells. Expression of iron-regulatory protein (IRP)-1 predominates over IRP-2 in infected cells. In infected cells, attenuated binding activity of IRP-iron responsive elements (IREs) is observed using the electrophoretic mobility-shift assay. These results suggest that iron homeostasis is modulated in CT-infected HeLa cells at the interface of acquisition and commensal use of iron. |
---|