Cargando…
Specific synapses develop preferentially among sister excitatory neurons in the neocortex
Neurons in the mammalian neocortex are organized into functional columns 1, 2. Within a column, highly specific synaptic connections are formed to ensure that similar physiological properties are shared by neuron ensembles spanning from the pia to the white matter. Recent studies suggest that synapt...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727717/ https://www.ncbi.nlm.nih.gov/pubmed/19204731 http://dx.doi.org/10.1038/nature07722 |
_version_ | 1782170695208271872 |
---|---|
author | Yu, Yong-Chun Bultje, Ronald S. Wang, Xiaoqun Shi, Song-Hai |
author_facet | Yu, Yong-Chun Bultje, Ronald S. Wang, Xiaoqun Shi, Song-Hai |
author_sort | Yu, Yong-Chun |
collection | PubMed |
description | Neurons in the mammalian neocortex are organized into functional columns 1, 2. Within a column, highly specific synaptic connections are formed to ensure that similar physiological properties are shared by neuron ensembles spanning from the pia to the white matter. Recent studies suggest that synaptic connectivity in the neocortex is sparse and highly specific 3–8 to allow even adjacent neurons to convey information independently 9–12. How this fine-scale microcircuit is constructed to create a functional columnar architecture at the level of individual neurons largely remains a mystery. Here we investigate whether radial clones of excitatory neurons arising from the same mother cell in the developing neocortex serve as a substrate for the formation of this highly specific microcircuit. We labelled ontogenetic radial clones of excitatory neurons in the mouse neocortex by in utero intraventricular injection of EGFP-expressing retroviruses around the onset of the peak phase of neocortical neurogenesis. Multiple-electrode whole-cell recordings were performed to probe synapse formation among these EGFP-labelled sister excitatory neurons in radial clones and the adjacent non-siblings during postnatal stages. We found that radially aligned sister excitatory neurons have a propensity for developing unidirectional chemical synapses with each other rather than with neighbouring non-siblings. Moreover, these synaptic connections display the same interlaminar directional preference as those observed in the mature neocortex. These results suggest that specific microcircuits develop preferentially within ontogenetic radial clones of excitatory neurons in the developing neocortex and contribute to the emergence of functional columnar microarchitectures in the mature neocortex. |
format | Text |
id | pubmed-2727717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-27277172009-09-26 Specific synapses develop preferentially among sister excitatory neurons in the neocortex Yu, Yong-Chun Bultje, Ronald S. Wang, Xiaoqun Shi, Song-Hai Nature Article Neurons in the mammalian neocortex are organized into functional columns 1, 2. Within a column, highly specific synaptic connections are formed to ensure that similar physiological properties are shared by neuron ensembles spanning from the pia to the white matter. Recent studies suggest that synaptic connectivity in the neocortex is sparse and highly specific 3–8 to allow even adjacent neurons to convey information independently 9–12. How this fine-scale microcircuit is constructed to create a functional columnar architecture at the level of individual neurons largely remains a mystery. Here we investigate whether radial clones of excitatory neurons arising from the same mother cell in the developing neocortex serve as a substrate for the formation of this highly specific microcircuit. We labelled ontogenetic radial clones of excitatory neurons in the mouse neocortex by in utero intraventricular injection of EGFP-expressing retroviruses around the onset of the peak phase of neocortical neurogenesis. Multiple-electrode whole-cell recordings were performed to probe synapse formation among these EGFP-labelled sister excitatory neurons in radial clones and the adjacent non-siblings during postnatal stages. We found that radially aligned sister excitatory neurons have a propensity for developing unidirectional chemical synapses with each other rather than with neighbouring non-siblings. Moreover, these synaptic connections display the same interlaminar directional preference as those observed in the mature neocortex. These results suggest that specific microcircuits develop preferentially within ontogenetic radial clones of excitatory neurons in the developing neocortex and contribute to the emergence of functional columnar microarchitectures in the mature neocortex. 2009-02-08 2009-03-26 /pmc/articles/PMC2727717/ /pubmed/19204731 http://dx.doi.org/10.1038/nature07722 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Yu, Yong-Chun Bultje, Ronald S. Wang, Xiaoqun Shi, Song-Hai Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title | Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title_full | Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title_fullStr | Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title_full_unstemmed | Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title_short | Specific synapses develop preferentially among sister excitatory neurons in the neocortex |
title_sort | specific synapses develop preferentially among sister excitatory neurons in the neocortex |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727717/ https://www.ncbi.nlm.nih.gov/pubmed/19204731 http://dx.doi.org/10.1038/nature07722 |
work_keys_str_mv | AT yuyongchun specificsynapsesdeveloppreferentiallyamongsisterexcitatoryneuronsintheneocortex AT bultjeronalds specificsynapsesdeveloppreferentiallyamongsisterexcitatoryneuronsintheneocortex AT wangxiaoqun specificsynapsesdeveloppreferentiallyamongsisterexcitatoryneuronsintheneocortex AT shisonghai specificsynapsesdeveloppreferentiallyamongsisterexcitatoryneuronsintheneocortex |