Cargando…

Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification

BACKGROUND: Glyoxalase I is a metalloenzyme of the glyoxalase pathway that plays a central role in eliminating the toxic metabolite methyglyoxal. The protozoan parasite Leishmania donovani possesses a unique trypanothione dependent glyoxalase system. PRINCIPAL FINDINGS: Analysis of the L. donovani G...

Descripción completa

Detalles Bibliográficos
Autores principales: Chauhan, Swati C., Madhubala, Rentala
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728510/
https://www.ncbi.nlm.nih.gov/pubmed/19710909
http://dx.doi.org/10.1371/journal.pone.0006805
_version_ 1782170739774849024
author Chauhan, Swati C.
Madhubala, Rentala
author_facet Chauhan, Swati C.
Madhubala, Rentala
author_sort Chauhan, Swati C.
collection PubMed
description BACKGROUND: Glyoxalase I is a metalloenzyme of the glyoxalase pathway that plays a central role in eliminating the toxic metabolite methyglyoxal. The protozoan parasite Leishmania donovani possesses a unique trypanothione dependent glyoxalase system. PRINCIPAL FINDINGS: Analysis of the L. donovani GLOI sequence predicted a mitochondrial targeting sequence, suggesting that the enzyme is likely to be targeted to the mitochondria. In order to determine definitively the intracellular localization of GLOI in L. donovani, a full-length GLOI gene was fused to green fluorescent protein (GFP) gene to generate a chimeric construct. Confocal microscopy of L. donovani promastigotes carrying this chimeric construct and immunofluorescence microscopy using anti-GLOI antibodies demonstrated that GLOI is localized in the kinetoplast of the parasite apart from the cytosol. To study the physiological role of GLOI in Leishmania, we first created promastigote mutants heterozygous for GLOI by targeted gene replacement using either hygromycin or neomycin phosphotransferases as selectable markers. Heterozygous mutants of L. donovani display a slower growth rate, have lower glyoxalase I activity and have reduced ability to detoxify methylglyoxal in comparison to the wild-type parasites. Complementation of the heterozygous mutant with an episomal GLOI construct showed the restoration of heterozygous mutant phenotype nearly fully to that of the wild-type. Null mutants were obtained only after GLOI was expressed from an episome in heterozygous mutants. CONCLUSIONS: We for the first time report localization of GLOI in L. donovani in the kinetoplast. To study the physiological role of GLOI in Leishmania, we have generated GLOI attenuated strains by targeted gene replacement and report that GLOI is likely to be an important gene since GLOI mutants in L. donovani showed altered phenotype. The present data supports that the GLOI plays an essential role in the survival of this pathogenic organism and that inhibition of the enzyme potentiates the toxicity of methylglyoxal.
format Text
id pubmed-2728510
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-27285102009-08-27 Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification Chauhan, Swati C. Madhubala, Rentala PLoS One Research Article BACKGROUND: Glyoxalase I is a metalloenzyme of the glyoxalase pathway that plays a central role in eliminating the toxic metabolite methyglyoxal. The protozoan parasite Leishmania donovani possesses a unique trypanothione dependent glyoxalase system. PRINCIPAL FINDINGS: Analysis of the L. donovani GLOI sequence predicted a mitochondrial targeting sequence, suggesting that the enzyme is likely to be targeted to the mitochondria. In order to determine definitively the intracellular localization of GLOI in L. donovani, a full-length GLOI gene was fused to green fluorescent protein (GFP) gene to generate a chimeric construct. Confocal microscopy of L. donovani promastigotes carrying this chimeric construct and immunofluorescence microscopy using anti-GLOI antibodies demonstrated that GLOI is localized in the kinetoplast of the parasite apart from the cytosol. To study the physiological role of GLOI in Leishmania, we first created promastigote mutants heterozygous for GLOI by targeted gene replacement using either hygromycin or neomycin phosphotransferases as selectable markers. Heterozygous mutants of L. donovani display a slower growth rate, have lower glyoxalase I activity and have reduced ability to detoxify methylglyoxal in comparison to the wild-type parasites. Complementation of the heterozygous mutant with an episomal GLOI construct showed the restoration of heterozygous mutant phenotype nearly fully to that of the wild-type. Null mutants were obtained only after GLOI was expressed from an episome in heterozygous mutants. CONCLUSIONS: We for the first time report localization of GLOI in L. donovani in the kinetoplast. To study the physiological role of GLOI in Leishmania, we have generated GLOI attenuated strains by targeted gene replacement and report that GLOI is likely to be an important gene since GLOI mutants in L. donovani showed altered phenotype. The present data supports that the GLOI plays an essential role in the survival of this pathogenic organism and that inhibition of the enzyme potentiates the toxicity of methylglyoxal. Public Library of Science 2009-08-27 /pmc/articles/PMC2728510/ /pubmed/19710909 http://dx.doi.org/10.1371/journal.pone.0006805 Text en Chauhan, Madhubala. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Chauhan, Swati C.
Madhubala, Rentala
Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title_full Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title_fullStr Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title_full_unstemmed Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title_short Glyoxalase I Gene Deletion Mutants of Leishmania donovani Exhibit Reduced Methylglyoxal Detoxification
title_sort glyoxalase i gene deletion mutants of leishmania donovani exhibit reduced methylglyoxal detoxification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728510/
https://www.ncbi.nlm.nih.gov/pubmed/19710909
http://dx.doi.org/10.1371/journal.pone.0006805
work_keys_str_mv AT chauhanswatic glyoxalaseigenedeletionmutantsofleishmaniadonovaniexhibitreducedmethylglyoxaldetoxification
AT madhubalarentala glyoxalaseigenedeletionmutantsofleishmaniadonovaniexhibitreducedmethylglyoxaldetoxification