Cargando…

Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry

Osteochondral grafting for cartilage lesions is an attractive surgical procedure; however, the clinical results have not always been successful. Surgical recommendations differ with respect to donor site and graft placement technique. No clear biomechanical analysis of these surgical options has bee...

Descripción completa

Detalles Bibliográficos
Autores principales: D. D’Lima, Darryl, C. Chen, Peter, W. Colwell Jr., Clifford
Formato: Texto
Lenguaje:English
Publicado: Bentham Open 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729389/
https://www.ncbi.nlm.nih.gov/pubmed/19696917
http://dx.doi.org/10.2174/1874325000903010061
_version_ 1782170800878518272
author D. D’Lima, Darryl
C. Chen, Peter
W. Colwell Jr., Clifford
author_facet D. D’Lima, Darryl
C. Chen, Peter
W. Colwell Jr., Clifford
author_sort D. D’Lima, Darryl
collection PubMed
description Osteochondral grafting for cartilage lesions is an attractive surgical procedure; however, the clinical results have not always been successful. Surgical recommendations differ with respect to donor site and graft placement technique. No clear biomechanical analysis of these surgical options has been reported. We hypothesized that differences in graft placement, graft biomechanical properties, and graft topography affect cartilage stresses and strains. A finite element model of articular cartilage and meniscus in a normal knee was constructed. The model was used to analyze the magnitude and the distribution of contact stresses, von Mises stresses, and compressive strains in the intact knee, after creation of an 8-mm diameter osteochondral defect, and after osteochondral grafting of the defect. The effects of graft placement, articular surface topography, and biomechanical properties were evaluated. The osteochondral defect generated minimal changes in peak contact stress (3.6 MPa) relative to the intact condition (3.4 MPa) but significantly increased peak von Mises stress (by 110%) and peak compressive strain (by 63%). A perfectly matched graft restored stresses and strains to near intact conditions. Leaving the graft proud by 0.5 mm generated the greatest increase in local stresses (peak contact stresses = 6.7 MPa). Reducing graft stiffness and curvature of articular surface had lesser effects on local stresses. Graft alignment, graft biomechanical properties, and graft topography all affected cartilage stresses and strains. Contact stresses, von Mises stresses, and compressive strains are biomechanical markers for potential tissue damage and cell death. Leaving the graft proud tends to jeopardize the graft by increasing the stresses and strains on the graft. From a biomechanical perspective, the ideal surgical procedure is a perfectly aligned graft with reasonably matched articular cartilage surface from a lower load-bearing region of the knee.
format Text
id pubmed-2729389
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Bentham Open
record_format MEDLINE/PubMed
spelling pubmed-27293892009-08-20 Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry D. D’Lima, Darryl C. Chen, Peter W. Colwell Jr., Clifford Open Orthop J Article Osteochondral grafting for cartilage lesions is an attractive surgical procedure; however, the clinical results have not always been successful. Surgical recommendations differ with respect to donor site and graft placement technique. No clear biomechanical analysis of these surgical options has been reported. We hypothesized that differences in graft placement, graft biomechanical properties, and graft topography affect cartilage stresses and strains. A finite element model of articular cartilage and meniscus in a normal knee was constructed. The model was used to analyze the magnitude and the distribution of contact stresses, von Mises stresses, and compressive strains in the intact knee, after creation of an 8-mm diameter osteochondral defect, and after osteochondral grafting of the defect. The effects of graft placement, articular surface topography, and biomechanical properties were evaluated. The osteochondral defect generated minimal changes in peak contact stress (3.6 MPa) relative to the intact condition (3.4 MPa) but significantly increased peak von Mises stress (by 110%) and peak compressive strain (by 63%). A perfectly matched graft restored stresses and strains to near intact conditions. Leaving the graft proud by 0.5 mm generated the greatest increase in local stresses (peak contact stresses = 6.7 MPa). Reducing graft stiffness and curvature of articular surface had lesser effects on local stresses. Graft alignment, graft biomechanical properties, and graft topography all affected cartilage stresses and strains. Contact stresses, von Mises stresses, and compressive strains are biomechanical markers for potential tissue damage and cell death. Leaving the graft proud tends to jeopardize the graft by increasing the stresses and strains on the graft. From a biomechanical perspective, the ideal surgical procedure is a perfectly aligned graft with reasonably matched articular cartilage surface from a lower load-bearing region of the knee. Bentham Open 2009-08-06 /pmc/articles/PMC2729389/ /pubmed/19696917 http://dx.doi.org/10.2174/1874325000903010061 Text en © D’Lima et al.; Licensee Bentham Open. http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
spellingShingle Article
D. D’Lima, Darryl
C. Chen, Peter
W. Colwell Jr., Clifford
Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title_full Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title_fullStr Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title_full_unstemmed Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title_short Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
title_sort osteochondral grafting: effect of graft alignment, material properties, and articular geometry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729389/
https://www.ncbi.nlm.nih.gov/pubmed/19696917
http://dx.doi.org/10.2174/1874325000903010061
work_keys_str_mv AT ddlimadarryl osteochondralgraftingeffectofgraftalignmentmaterialpropertiesandarticulargeometry
AT cchenpeter osteochondralgraftingeffectofgraftalignmentmaterialpropertiesandarticulargeometry
AT wcolwelljrclifford osteochondralgraftingeffectofgraftalignmentmaterialpropertiesandarticulargeometry