Cargando…

Mathematical modeling supports substantial mouse neural progenitor cell death

BACKGROUND: Existing quantitative models of mouse cerebral cortical development are not fully constrained by experimental data. RESULTS: Here, we use simple difference equations to model neural progenitor cell fate decisions, incorporating intermediate progenitor cells and initially low rates of neu...

Descripción completa

Detalles Bibliográficos
Autores principales: McConnell, Michael J, MacMillan, Hugh R, Chun, Jerold
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729736/
https://www.ncbi.nlm.nih.gov/pubmed/19602274
http://dx.doi.org/10.1186/1749-8104-4-28
Descripción
Sumario:BACKGROUND: Existing quantitative models of mouse cerebral cortical development are not fully constrained by experimental data. RESULTS: Here, we use simple difference equations to model neural progenitor cell fate decisions, incorporating intermediate progenitor cells and initially low rates of neural progenitor cell death. Also, we conduct a sensitivity analysis to investigate possible uncertainty in the fraction of cells that divide, differentiate, and die at each cell cycle. CONCLUSION: We demonstrate that uniformly low-level neural progenitor cell death, as concluded in previous models, is incompatible with normal mouse cortical development. Levels of neural progenitor cell death up to and exceeding 50% are compatible with normal cortical development and may operate to prevent forebrain overgrowth as observed following cell death attenuation, as occurs in caspase 3-null mutant mice.