Cargando…
Alkylated DNA damage flipping bridges base and nucleotide excision repair
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine DNA-alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the AGT reactive cysteine and alkyltransferase activity...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/ https://www.ncbi.nlm.nih.gov/pubmed/19516334 http://dx.doi.org/10.1038/nature08076 |
_version_ | 1782170837943582720 |
---|---|
author | Tubbs, Julie L. Latypov, Vitaly Kanugula, Sreenivas Butt, Amna Melikishvili, Manana Kraehenbuehl, Rolf Fleck, Oliver Marriott, Andrew Watson, Amanda J. Verbeek, Barbara McGown, Gail Thorncroft, Mary Santibanez-Koref, Mauro F. Millington, Christopher Arvai, Andrew S. Kroeger, Matthew D. Peterson, Lisa A. Williams, David M. Fried, Michael G. Margison, Geoffrey P. Pegg, Anthony E. Tainer, John A. |
author_facet | Tubbs, Julie L. Latypov, Vitaly Kanugula, Sreenivas Butt, Amna Melikishvili, Manana Kraehenbuehl, Rolf Fleck, Oliver Marriott, Andrew Watson, Amanda J. Verbeek, Barbara McGown, Gail Thorncroft, Mary Santibanez-Koref, Mauro F. Millington, Christopher Arvai, Andrew S. Kroeger, Matthew D. Peterson, Lisa A. Williams, David M. Fried, Michael G. Margison, Geoffrey P. Pegg, Anthony E. Tainer, John A. |
author_sort | Tubbs, Julie L. |
collection | PubMed |
description | Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine DNA-alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the AGT reactive cysteine and alkyltransferase activity. Here we determine S. pombe ATL structures without and with damaged DNA containing endogenous lesion O(6)-methylguanine or cigarette smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to XPG and ERCC1 in S. pombe homologs Rad13 and Swi10 and biochemical interactions with UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair. |
format | Text |
id | pubmed-2729916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-27299162009-12-11 Alkylated DNA damage flipping bridges base and nucleotide excision repair Tubbs, Julie L. Latypov, Vitaly Kanugula, Sreenivas Butt, Amna Melikishvili, Manana Kraehenbuehl, Rolf Fleck, Oliver Marriott, Andrew Watson, Amanda J. Verbeek, Barbara McGown, Gail Thorncroft, Mary Santibanez-Koref, Mauro F. Millington, Christopher Arvai, Andrew S. Kroeger, Matthew D. Peterson, Lisa A. Williams, David M. Fried, Michael G. Margison, Geoffrey P. Pegg, Anthony E. Tainer, John A. Nature Article Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine DNA-alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the AGT reactive cysteine and alkyltransferase activity. Here we determine S. pombe ATL structures without and with damaged DNA containing endogenous lesion O(6)-methylguanine or cigarette smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to XPG and ERCC1 in S. pombe homologs Rad13 and Swi10 and biochemical interactions with UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair. 2009-06-11 /pmc/articles/PMC2729916/ /pubmed/19516334 http://dx.doi.org/10.1038/nature08076 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Tubbs, Julie L. Latypov, Vitaly Kanugula, Sreenivas Butt, Amna Melikishvili, Manana Kraehenbuehl, Rolf Fleck, Oliver Marriott, Andrew Watson, Amanda J. Verbeek, Barbara McGown, Gail Thorncroft, Mary Santibanez-Koref, Mauro F. Millington, Christopher Arvai, Andrew S. Kroeger, Matthew D. Peterson, Lisa A. Williams, David M. Fried, Michael G. Margison, Geoffrey P. Pegg, Anthony E. Tainer, John A. Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title | Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title_full | Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title_fullStr | Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title_full_unstemmed | Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title_short | Alkylated DNA damage flipping bridges base and nucleotide excision repair |
title_sort | alkylated dna damage flipping bridges base and nucleotide excision repair |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/ https://www.ncbi.nlm.nih.gov/pubmed/19516334 http://dx.doi.org/10.1038/nature08076 |
work_keys_str_mv | AT tubbsjuliel alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT latypovvitaly alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT kanugulasreenivas alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT buttamna alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT melikishvilimanana alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT kraehenbuehlrolf alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT fleckoliver alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT marriottandrew alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT watsonamandaj alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT verbeekbarbara alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT mcgowngail alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT thorncroftmary alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT santibanezkorefmaurof alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT millingtonchristopher alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT arvaiandrews alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT kroegermatthewd alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT petersonlisaa alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT williamsdavidm alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT friedmichaelg alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT margisongeoffreyp alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT pegganthonye alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair AT tainerjohna alkylateddnadamageflippingbridgesbaseandnucleotideexcisionrepair |