Cargando…
Robust Model Selection for Classification of Microarrays
Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and reliability assurance of such diagnosis systems are still remaing problems in real clinical scenes. To reduce the cost, we need a supervised classifier involving the smallest number o...
Autores principales: | Suzuki, Ikumi, Takenouchi, Takashi, Ohira, Miki, Oba, Shigeyuki, Ishii, Shin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730179/ https://www.ncbi.nlm.nih.gov/pubmed/19718450 |
Ejemplares similares
-
A Robust Gene Selection Method for Microarray-based Cancer Classification
por: Wang, Xiaosheng, et al.
Publicado: (2010) -
Oncogenic LMO3 Collaborates with HEN2 to Enhance Neuroblastoma Cell Growth through Transactivation of Mash1
por: Isogai, Eriko, et al.
Publicado: (2011) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018) -
Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer
por: Wang, Jing, et al.
Publicado: (2007) -
Biological assessment of robust noise models in microarray data analysis
por: Posekany, A., et al.
Publicado: (2011)