Cargando…
Molecular Subtyping of Bacillus anthracis and the 2001 Bioterrorism-Associated Anthrax Outbreak, United States
Molecular subtyping of Bacillus anthracis played an important role in differentiating and identifying anthrax strains during the 2001 bioterrorism-associated outbreak. Because B. anthracis has a low level of genetic variability, only a few subtyping methods, with varying reliability, exist. We initi...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730295/ https://www.ncbi.nlm.nih.gov/pubmed/12396925 http://dx.doi.org/10.3201/eid0810.020394 |
Sumario: | Molecular subtyping of Bacillus anthracis played an important role in differentiating and identifying anthrax strains during the 2001 bioterrorism-associated outbreak. Because B. anthracis has a low level of genetic variability, only a few subtyping methods, with varying reliability, exist. We initially used multiple-locus variable-number tandem repeat analysis (MLVA) to subtype 135 B. anthracis isolates associated with the outbreak. All isolates were determined to be of genotype 62, the same as the Ames strain used in laboratories. We sequenced the protective antigen gene (pagA) from 42 representative outbreak isolates and determined they all had a pagA sequence indistinguishable from the Ames strain (PA genotype I). MLVA and pagA sequencing were also used on DNA from clinical specimens, making subtyping B. anthracis possible without an isolate. Use of high-resolution molecular subtyping determined that all outbreak isolates were indistinguishable by the methods used and probably originated from a single source. In addition, subtyping rapidly identified laboratory contaminants and non-outbreak–related isolates. |
---|