Cargando…
CRYSTALP2: sequence-based protein crystallization propensity prediction
BACKGROUND: Current protocols yield crystals for <30% of known proteins, indicating that automatically identifying crystallizable proteins may improve high-throughput structural genomics efforts. We introduce CRYSTALP2, a kernel-based method that predicts the propensity of a given protein sequenc...
Autores principales: | Kurgan, Lukasz, Razib, Ali A, Aghakhani, Sara, Dick, Scott, Mizianty, Marcin, Jahandideh, Samad |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731098/ https://www.ncbi.nlm.nih.gov/pubmed/19646256 http://dx.doi.org/10.1186/1472-6807-9-50 |
Ejemplares similares
-
Sequence-based prediction of protein crystallization, purification and production propensity
por: Mizianty, Marcin J., et al.
Publicado: (2011) -
Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences
por: Mizianty, Marcin J, et al.
Publicado: (2009) -
Genome Sequence of Mycobacterium Phage CrystalP
por: Fleischacker, Christine L., et al.
Publicado: (2017) -
In-silico prediction of disorder content using hybrid sequence representation
por: Mizianty, Marcin J, et al.
Publicado: (2011) -
fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization
por: Meng, Fanchi, et al.
Publicado: (2018)