Cargando…
Prediction of MHC class I binding peptides using probability distribution functions
Binding of peptides to specific Major Histo-compatibility Complex (MHC) molecule is important for understanding immunity and has applications to vaccine discovery and design of immunotherapy. Artificial neural networks (ANN) are widely used by predictions tools to classify the peptides as binders or...
Autores principales: | Soam, Sudhir Singh, Khan, Feroz, Bhasker, Bharat, Mishra, Bhartendu Nath |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732036/ https://www.ncbi.nlm.nih.gov/pubmed/19759816 |
Ejemplares similares
-
Elementary probability /
por: Stirzaker, David
Publicado: (1994) -
A philosophical essay on probabilities /
por: Laplace, Pierre Simon, marquis de, 1749-1827
Publicado: (1995) -
Improved Prediction of MHC Class I Binders/Non-Binders Peptides Through Artificial Neural Network Using Variable Learning Rate: SARS Corona Virus, a Case Study
por: Soam, Sudhir Singh, et al.
Publicado: (2010) -
Ranking of binding and nonbinding peptides to MHC class I molecules using inverse folding approach: Implications for vaccine design
por: Singh, Satarudra Prakash, et al.
Publicado: (2008) -
2021 MHC Awards and Recognition
por: VandenBerg, Amy, et al.
Publicado: (2022)