Cargando…
Glycemic Status and Brain Injury in Older Individuals: The Age Gene/Environment Susceptibility–Reykjavik Study
OBJECTIVE: To examine the association of glycemic status to magnetic resonance imaging indicators of brain pathological changes. RESEARCH DESIGN AND METHODS: This was a cross-sectional, population-based study of 4,415 men and women without dementia (mean age 76 years) participating in the Age Gene/E...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732166/ https://www.ncbi.nlm.nih.gov/pubmed/19509008 http://dx.doi.org/10.2337/dc08-2300 |
Sumario: | OBJECTIVE: To examine the association of glycemic status to magnetic resonance imaging indicators of brain pathological changes. RESEARCH DESIGN AND METHODS: This was a cross-sectional, population-based study of 4,415 men and women without dementia (mean age 76 years) participating in the Age Gene/Environment Susceptibility–Reykjavik Study. Glycemic status groups included the following: type 2 diabetes (self-report of diabetes, use of diabetes medications, or fasting blood glucose ≥7.0 mmol/l [11.1%]); impaired fasting glucose (IFG) (fasting blood glucose 5.6–6.9 mmol/l [36.2%]); and normoglycemic (52.7%). Outcomes were total brain volume, white and gray matter volume, white matter lesion (WML) volume, and presence of cerebral infarcts. RESULTS: After adjustment for demographic and cardiovascular risk factors, participants with type 2 diabetes had significantly lower total brain volume (72.2 vs. 71.5%; P < 0.001) and lower gray and white matter volumes (45.1 vs. 44.9%, P < 0.01 and 25.7 vs. 25.3%, P < 0.001, respectively) and were more likely to have single (odds ratio 1.45 [95% CI 1.14–1.85]) or multiple (2.27 [1.60–3.23]) cerebral infarcts compared with normoglycemic participants. Longer duration of type 2 diabetes was associated with lower total brain volume and gray and white matter volume, higher WML volume (all P(trend) < 0.05), and a greater likelihood of single and multiple cerebral infarcts (all P(trend) < 0.01). CONCLUSIONS: Type 2 diabetic participants have more pronounced brain atrophy and are more likely to have cerebral infarcts. Duration of type 2 diabetes is associated with brain changes, suggesting that type 2 diabetes has a cumulative effect on the brain. |
---|