Cargando…
Augmented training of hidden Markov models to recognize remote homologs via simulated evolution
Motivation: While profile hidden Markov models (HMMs) are successful and powerful methods to recognize homologous proteins, they can break down when homology becomes too distant due to lack of sufficient training data. We show that we can improve the performance of HMMs in this domain by using a sim...
Autores principales: | Kumar, Anoop, Cowen, Lenore |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732314/ https://www.ncbi.nlm.nih.gov/pubmed/19389731 http://dx.doi.org/10.1093/bioinformatics/btp265 |
Ejemplares similares
-
Recognition of beta-structural motifs using hidden Markov models trained with simulated evolution
por: Kumar, Anoop, et al.
Publicado: (2010) -
SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone
por: Daniels, Noah M., et al.
Publicado: (2012) -
Remote homology search with hidden Potts models
por: Wilburn, Grey W., et al.
Publicado: (2020) -
Hidden Markov Models for Evolution and Comparative Genomics Analysis
por: Bykova, Nadezda A., et al.
Publicado: (2013) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005)