Cargando…
Motmot, an open-source toolkit for realtime video acquisition and analysis
BACKGROUND: Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732620/ https://www.ncbi.nlm.nih.gov/pubmed/19624853 http://dx.doi.org/10.1186/1751-0473-4-5 |
_version_ | 1782171061414002688 |
---|---|
author | Straw, Andrew D Dickinson, Michael H |
author_facet | Straw, Andrew D Dickinson, Michael H |
author_sort | Straw, Andrew D |
collection | PubMed |
description | BACKGROUND: Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. RESULTS: Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. CONCLUSION: Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at |
format | Text |
id | pubmed-2732620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27326202009-08-27 Motmot, an open-source toolkit for realtime video acquisition and analysis Straw, Andrew D Dickinson, Michael H Source Code Biol Med Research BACKGROUND: Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. RESULTS: Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. CONCLUSION: Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at BioMed Central 2009-07-22 /pmc/articles/PMC2732620/ /pubmed/19624853 http://dx.doi.org/10.1186/1751-0473-4-5 Text en Copyright © 2009 Straw and Dickinson; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Straw, Andrew D Dickinson, Michael H Motmot, an open-source toolkit for realtime video acquisition and analysis |
title | Motmot, an open-source toolkit for realtime video acquisition and analysis |
title_full | Motmot, an open-source toolkit for realtime video acquisition and analysis |
title_fullStr | Motmot, an open-source toolkit for realtime video acquisition and analysis |
title_full_unstemmed | Motmot, an open-source toolkit for realtime video acquisition and analysis |
title_short | Motmot, an open-source toolkit for realtime video acquisition and analysis |
title_sort | motmot, an open-source toolkit for realtime video acquisition and analysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732620/ https://www.ncbi.nlm.nih.gov/pubmed/19624853 http://dx.doi.org/10.1186/1751-0473-4-5 |
work_keys_str_mv | AT strawandrewd motmotanopensourcetoolkitforrealtimevideoacquisitionandanalysis AT dickinsonmichaelh motmotanopensourcetoolkitforrealtimevideoacquisitionandanalysis |