Cargando…

Vision based interface system for hands free control of an intelligent wheelchair

BACKGROUND: Due to the shift of the age structure in today's populations, the necessities for developing the devices or technologies to support them have been increasing. Traditionally, the wheelchair, including powered and manual ones, is the most popular and important rehabilitation/assistive...

Descripción completa

Detalles Bibliográficos
Autores principales: Ju, Jin Sun, Shin, Yunhee, Kim, Eun Yi
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732630/
https://www.ncbi.nlm.nih.gov/pubmed/19660132
http://dx.doi.org/10.1186/1743-0003-6-33
Descripción
Sumario:BACKGROUND: Due to the shift of the age structure in today's populations, the necessities for developing the devices or technologies to support them have been increasing. Traditionally, the wheelchair, including powered and manual ones, is the most popular and important rehabilitation/assistive device for the disabled and the elderly. However, it is still highly restricted especially for severely disabled. As a solution to this, the Intelligent Wheelchairs (IWs) have received considerable attention as mobility aids. The purpose of this work is to develop the IW interface for providing more convenient and efficient interface to the people the disability in their limbs. METHODS: This paper proposes an intelligent wheelchair (IW) control system for the people with various disabilities. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an IW is determined by the inclination of the user's face, while proceeding and stopping are determined by the shapes of the user's mouth. Our system is composed of electric powered wheelchair, data acquisition board, ultrasonic/infra-red sensors, a PC camera, and vision system. Then the vision system to analyze user's gestures is performed by three stages: detector, recognizer, and converter. In the detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region is detected based on edge information. The extracted features are sent to the recognizer, which recognizes the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to the converter to control the wheelchair. RESULT & CONCLUSION: The advantages of the proposed system include 1) accurate recognition of user's intention with minimal user motion and 2) robustness to a cluttered background and the time-varying illumination. To prove these advantages, the proposed system was tested with 34 users in indoor and outdoor environments and the results were compared with those of other systems, then the results showed that the proposed system has superior performance to other systems in terms of speed and accuracy. Therefore, it is proved that proposed system provided a friendly and convenient interface to the severely disabled people.