Cargando…
HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells
The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733377/ https://www.ncbi.nlm.nih.gov/pubmed/19544454 http://dx.doi.org/10.1002/stem.90 |
_version_ | 1782171103155716096 |
---|---|
author | Mace, Kimberly A Restivo, Terry E Rinn, John L Paquet, Agnes C Chang, Howard Y Young, David M Boudreau, Nancy J |
author_facet | Mace, Kimberly A Restivo, Terry E Rinn, John L Paquet, Agnes C Chang, Howard Y Young, David M Boudreau, Nancy J |
author_sort | Mace, Kimberly A |
collection | PubMed |
description | The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds. |
format | Text |
id | pubmed-2733377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-27333772009-09-02 HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells Mace, Kimberly A Restivo, Terry E Rinn, John L Paquet, Agnes C Chang, Howard Y Young, David M Boudreau, Nancy J Stem Cells Tissue-Specific Stem Cells The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds. Wiley Subscription Services, Inc., A Wiley Company 2009-07 /pmc/articles/PMC2733377/ /pubmed/19544454 http://dx.doi.org/10.1002/stem.90 Text en Copyright © 2009 AlphaMed Press http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Tissue-Specific Stem Cells Mace, Kimberly A Restivo, Terry E Rinn, John L Paquet, Agnes C Chang, Howard Y Young, David M Boudreau, Nancy J HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title | HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title_full | HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title_fullStr | HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title_full_unstemmed | HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title_short | HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells |
title_sort | hoxa3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells |
topic | Tissue-Specific Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733377/ https://www.ncbi.nlm.nih.gov/pubmed/19544454 http://dx.doi.org/10.1002/stem.90 |
work_keys_str_mv | AT macekimberlya hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT restivoterrye hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT rinnjohnl hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT paquetagnesc hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT changhowardy hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT youngdavidm hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells AT boudreaunancyj hoxa3modulatesinjuryinducedmobilizationandrecruitmentofbonemarrowderivedcells |