Cargando…
A requirement for epsin in mitotic membrane and spindle organization
Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733747/ https://www.ncbi.nlm.nih.gov/pubmed/19704019 http://dx.doi.org/10.1083/jcb.200902071 |
_version_ | 1782171105268596736 |
---|---|
author | Liu, Zhonghua Zheng, Yixian |
author_facet | Liu, Zhonghua Zheng, Yixian |
author_sort | Liu, Zhonghua |
collection | PubMed |
description | Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic adapter protein, regulates mitotic membrane morphology and spindle integrity in HeLa cells. Using epsin that harbors point mutations in the epsin NH2-terminal homology domain and spindle assembly assays in Xenopus laevis egg extracts, we show that epsin-induced membrane curvature is required for proper spindle morphogenesis, independent of its function in endocytosis during interphase. Although several other membrane-interacting proteins, including clathrin, AP2, autosomal recessive hypercholesterolemia, and GRASP65, are implicated in the regulation of mitosis, whether they participate through regulation of membrane organization is unclear. Our study of epsin provides evidence that mitotic membrane organization influences spindle integrity. |
format | Text |
id | pubmed-2733747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27337472010-02-24 A requirement for epsin in mitotic membrane and spindle organization Liu, Zhonghua Zheng, Yixian J Cell Biol Research Articles Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic adapter protein, regulates mitotic membrane morphology and spindle integrity in HeLa cells. Using epsin that harbors point mutations in the epsin NH2-terminal homology domain and spindle assembly assays in Xenopus laevis egg extracts, we show that epsin-induced membrane curvature is required for proper spindle morphogenesis, independent of its function in endocytosis during interphase. Although several other membrane-interacting proteins, including clathrin, AP2, autosomal recessive hypercholesterolemia, and GRASP65, are implicated in the regulation of mitosis, whether they participate through regulation of membrane organization is unclear. Our study of epsin provides evidence that mitotic membrane organization influences spindle integrity. The Rockefeller University Press 2009-08-24 /pmc/articles/PMC2733747/ /pubmed/19704019 http://dx.doi.org/10.1083/jcb.200902071 Text en © 2009 Liu and Zheng This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Liu, Zhonghua Zheng, Yixian A requirement for epsin in mitotic membrane and spindle organization |
title | A requirement for epsin in mitotic membrane and spindle organization |
title_full | A requirement for epsin in mitotic membrane and spindle organization |
title_fullStr | A requirement for epsin in mitotic membrane and spindle organization |
title_full_unstemmed | A requirement for epsin in mitotic membrane and spindle organization |
title_short | A requirement for epsin in mitotic membrane and spindle organization |
title_sort | requirement for epsin in mitotic membrane and spindle organization |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733747/ https://www.ncbi.nlm.nih.gov/pubmed/19704019 http://dx.doi.org/10.1083/jcb.200902071 |
work_keys_str_mv | AT liuzhonghua arequirementforepsininmitoticmembraneandspindleorganization AT zhengyixian arequirementforepsininmitoticmembraneandspindleorganization AT liuzhonghua requirementforepsininmitoticmembraneandspindleorganization AT zhengyixian requirementforepsininmitoticmembraneandspindleorganization |