Cargando…
Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model
BACKGROUND: The development and progression of liver cancer may involve abnormal changes in DNA methylation, which lead to the activation of certain proto-oncogenes, such as c-myc, as well as the inactivation of certain tumor suppressors, such as p16. Betaine, as an active methyl-donor, maintains no...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733901/ https://www.ncbi.nlm.nih.gov/pubmed/19642983 http://dx.doi.org/10.1186/1471-2407-9-261 |
_version_ | 1782171113302786048 |
---|---|
author | Du, Yan-ping Peng, Jun-sheng Sun, Ai Tang, Zhi-hong Ling, Wen-hua Zhu, Hui-lian |
author_facet | Du, Yan-ping Peng, Jun-sheng Sun, Ai Tang, Zhi-hong Ling, Wen-hua Zhu, Hui-lian |
author_sort | Du, Yan-ping |
collection | PubMed |
description | BACKGROUND: The development and progression of liver cancer may involve abnormal changes in DNA methylation, which lead to the activation of certain proto-oncogenes, such as c-myc, as well as the inactivation of certain tumor suppressors, such as p16. Betaine, as an active methyl-donor, maintains normal DNA methylation patterns. However, there are few investigations on the protective effect of betaine in hepatocarcinogenesis. METHODS: Four groups of rats were given diethylinitrosamine (DEN) and fed with AIN-93G diets supplemented with 0, 10, 20 or 40 g betaine/kg (model, 1%, 2%, and 4% betaine, respectively), while the control group, received no DEN, fed with AIN-93G diet. Eight or 15 weeks later, the expression of p16 and c-myc mRNA was examined by Real-time PCR (Q-PCR). The DNA methylation status within the p16 and c-myc promoter was analyzed using methylation-specific PCR. RESULTS: Compared with the model group, numbers and areas of glutathione S-transferase placental form (GST-p)-positive foci were decreased in the livers of the rats treated with betaine (P < 0.05). Although the frequency of p16 promoter methylation in livers of the four DEN-fed groups appeared to increase, there is no difference among these groups after 8 or 15 weeks (P > 0.05). Betaine supplementation attenuated the down-regulation of p16 and inhibited the up-regulation of c-myc induced by DEN in a dose-dependent manner (P < 0.01). Meanwhile, increases in levels of malondialdehyde (MDA) and glutathione S-transferase (GST) in model, 2% and 4% betaine groups were observed (P < 0.05). Finally, enhanced antioxidative capacity (T-AOC) was observed in both the 2% and 4% betaine groups. CONCLUSION: Our data suggest that betaine attenuates DEN-induced damage in rat liver and reverses DEN-induced changes in mRNA levels. |
format | Text |
id | pubmed-2733901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27339012009-08-28 Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model Du, Yan-ping Peng, Jun-sheng Sun, Ai Tang, Zhi-hong Ling, Wen-hua Zhu, Hui-lian BMC Cancer Database BACKGROUND: The development and progression of liver cancer may involve abnormal changes in DNA methylation, which lead to the activation of certain proto-oncogenes, such as c-myc, as well as the inactivation of certain tumor suppressors, such as p16. Betaine, as an active methyl-donor, maintains normal DNA methylation patterns. However, there are few investigations on the protective effect of betaine in hepatocarcinogenesis. METHODS: Four groups of rats were given diethylinitrosamine (DEN) and fed with AIN-93G diets supplemented with 0, 10, 20 or 40 g betaine/kg (model, 1%, 2%, and 4% betaine, respectively), while the control group, received no DEN, fed with AIN-93G diet. Eight or 15 weeks later, the expression of p16 and c-myc mRNA was examined by Real-time PCR (Q-PCR). The DNA methylation status within the p16 and c-myc promoter was analyzed using methylation-specific PCR. RESULTS: Compared with the model group, numbers and areas of glutathione S-transferase placental form (GST-p)-positive foci were decreased in the livers of the rats treated with betaine (P < 0.05). Although the frequency of p16 promoter methylation in livers of the four DEN-fed groups appeared to increase, there is no difference among these groups after 8 or 15 weeks (P > 0.05). Betaine supplementation attenuated the down-regulation of p16 and inhibited the up-regulation of c-myc induced by DEN in a dose-dependent manner (P < 0.01). Meanwhile, increases in levels of malondialdehyde (MDA) and glutathione S-transferase (GST) in model, 2% and 4% betaine groups were observed (P < 0.05). Finally, enhanced antioxidative capacity (T-AOC) was observed in both the 2% and 4% betaine groups. CONCLUSION: Our data suggest that betaine attenuates DEN-induced damage in rat liver and reverses DEN-induced changes in mRNA levels. BioMed Central 2009-07-30 /pmc/articles/PMC2733901/ /pubmed/19642983 http://dx.doi.org/10.1186/1471-2407-9-261 Text en Copyright ©2009 Du et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Database Du, Yan-ping Peng, Jun-sheng Sun, Ai Tang, Zhi-hong Ling, Wen-hua Zhu, Hui-lian Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title | Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title_full | Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title_fullStr | Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title_full_unstemmed | Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title_short | Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model |
title_sort | assessment of the effect of betaine on p16 and c-myc dna methylation and mrna expression in a chemical induced rat liver cancer model |
topic | Database |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733901/ https://www.ncbi.nlm.nih.gov/pubmed/19642983 http://dx.doi.org/10.1186/1471-2407-9-261 |
work_keys_str_mv | AT duyanping assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel AT pengjunsheng assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel AT sunai assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel AT tangzhihong assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel AT lingwenhua assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel AT zhuhuilian assessmentoftheeffectofbetaineonp16andcmycdnamethylationandmrnaexpressioninachemicalinducedratlivercancermodel |