Cargando…
Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4
Mitochondria are cellular organelles that perform critical metabolic functions: they generate energy from nutrients but also provide metabolites for de novo synthesis of fatty acids and several amino acids. Thus mitochondrial mass and activity must be coordinated with nutrient availability, yet this...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735006/ https://www.ncbi.nlm.nih.gov/pubmed/19742324 http://dx.doi.org/10.1371/journal.pone.0006935 |
_version_ | 1782171243218206720 |
---|---|
author | Baltzer, Claudia Tiefenböck, Stefanie K. Marti, Mark Frei, Christian |
author_facet | Baltzer, Claudia Tiefenböck, Stefanie K. Marti, Mark Frei, Christian |
author_sort | Baltzer, Claudia |
collection | PubMed |
description | Mitochondria are cellular organelles that perform critical metabolic functions: they generate energy from nutrients but also provide metabolites for de novo synthesis of fatty acids and several amino acids. Thus mitochondrial mass and activity must be coordinated with nutrient availability, yet this remains poorly understood. Here, we demonstrate that Drosophila larvae grown in low yeast food have strong defects in mitochondrial abundance and respiration activity in the larval fat body. This correlates with reduced expression of genes encoding mitochondrial proteins, particularly genes involved in oxidative phosphorylation. Second, genes involved in glutamine metabolism are also expressed in a nutrient-dependent manner, suggesting a coordination of amino acid synthesis with mitochondrial abundance and activity. Moreover, we show that Delg (CG6338), the Drosophila homologue to the alpha subunit of mammalian transcription factor NRF-2/GABP, is required for proper expression of most genes encoding mitochondrial proteins. Our data demonstrate that Delg is critical to adjust mitochondrial abundance in respect to Cyclin D/Cdk4, a growth-promoting complex and glutamine metabolism according to nutrient availability. However, in contrast to nutrients, Delg is not involved in the regulation of mitochondrial activity in the fat body. These findings are the first genetic evidence that the regulation of mitochondrial mass can be uncoupled from mitochondrial activity. |
format | Text |
id | pubmed-2735006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27350062009-09-09 Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 Baltzer, Claudia Tiefenböck, Stefanie K. Marti, Mark Frei, Christian PLoS One Research Article Mitochondria are cellular organelles that perform critical metabolic functions: they generate energy from nutrients but also provide metabolites for de novo synthesis of fatty acids and several amino acids. Thus mitochondrial mass and activity must be coordinated with nutrient availability, yet this remains poorly understood. Here, we demonstrate that Drosophila larvae grown in low yeast food have strong defects in mitochondrial abundance and respiration activity in the larval fat body. This correlates with reduced expression of genes encoding mitochondrial proteins, particularly genes involved in oxidative phosphorylation. Second, genes involved in glutamine metabolism are also expressed in a nutrient-dependent manner, suggesting a coordination of amino acid synthesis with mitochondrial abundance and activity. Moreover, we show that Delg (CG6338), the Drosophila homologue to the alpha subunit of mammalian transcription factor NRF-2/GABP, is required for proper expression of most genes encoding mitochondrial proteins. Our data demonstrate that Delg is critical to adjust mitochondrial abundance in respect to Cyclin D/Cdk4, a growth-promoting complex and glutamine metabolism according to nutrient availability. However, in contrast to nutrients, Delg is not involved in the regulation of mitochondrial activity in the fat body. These findings are the first genetic evidence that the regulation of mitochondrial mass can be uncoupled from mitochondrial activity. Public Library of Science 2009-09-09 /pmc/articles/PMC2735006/ /pubmed/19742324 http://dx.doi.org/10.1371/journal.pone.0006935 Text en Baltzer et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Baltzer, Claudia Tiefenböck, Stefanie K. Marti, Mark Frei, Christian Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title | Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title_full | Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title_fullStr | Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title_full_unstemmed | Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title_short | Nutrition Controls Mitochondrial Biogenesis in the Drosophila Adipose Tissue through Delg and Cyclin D/Cdk4 |
title_sort | nutrition controls mitochondrial biogenesis in the drosophila adipose tissue through delg and cyclin d/cdk4 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735006/ https://www.ncbi.nlm.nih.gov/pubmed/19742324 http://dx.doi.org/10.1371/journal.pone.0006935 |
work_keys_str_mv | AT baltzerclaudia nutritioncontrolsmitochondrialbiogenesisinthedrosophilaadiposetissuethroughdelgandcyclindcdk4 AT tiefenbockstefaniek nutritioncontrolsmitochondrialbiogenesisinthedrosophilaadiposetissuethroughdelgandcyclindcdk4 AT martimark nutritioncontrolsmitochondrialbiogenesisinthedrosophilaadiposetissuethroughdelgandcyclindcdk4 AT freichristian nutritioncontrolsmitochondrialbiogenesisinthedrosophilaadiposetissuethroughdelgandcyclindcdk4 |