Cargando…
Disease surveillance using a hidden Markov model
BACKGROUND: Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice....
Autores principales: | Watkins, Rochelle E, Eagleson, Serryn, Veenendaal, Bert, Wright, Graeme, Plant, Aileen J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735038/ https://www.ncbi.nlm.nih.gov/pubmed/19664256 http://dx.doi.org/10.1186/1472-6947-9-39 |
Ejemplares similares
-
Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia
por: Watkins, Rochelle E, et al.
Publicado: (2008) -
Using GIS to create synthetic disease outbreaks
por: Watkins, Rochelle E, et al.
Publicado: (2007) -
Approaches to the evaluation of outbreak detection methods
por: Watkins, Rochelle E, et al.
Publicado: (2006) -
Tuberculosis Surveillance Using a Hidden Markov Model
por: Rafei, A, et al.
Publicado: (2012) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005)