Cargando…
Continuous shifts in the active set of spinal interneurons during changes in locomotor speed
The classic ‘size principle’ of motor control describes how increasingly forceful movements arise by the recruitment of motoneurons of progressively larger size and force output into the active pool. Here, we explore the activity of pools of spinal interneurons in larval zebrafish and find that incr...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735137/ https://www.ncbi.nlm.nih.gov/pubmed/18997790 http://dx.doi.org/10.1038/nn.2225 |
_version_ | 1782171246327234560 |
---|---|
author | McLean, David L. Masino, Mark A. Koh, Ingrid Y. Y. Lindquist, W. Brent Fetcho, Joseph R. |
author_facet | McLean, David L. Masino, Mark A. Koh, Ingrid Y. Y. Lindquist, W. Brent Fetcho, Joseph R. |
author_sort | McLean, David L. |
collection | PubMed |
description | The classic ‘size principle’ of motor control describes how increasingly forceful movements arise by the recruitment of motoneurons of progressively larger size and force output into the active pool. Here, we explore the activity of pools of spinal interneurons in larval zebrafish and find that increases in swimming speed are not associated with the simple addition of cells to the active pool. Instead, the recruitment of interneurons at faster speeds is accompanied by the silencing of those driving movements at slower speeds. This silencing occurs both between and within classes of rhythmically-active premotor excitatory interneurons. Thus, unlike motoneurons, there is a continuous shift in the set of cells driving the behavior, even though changes in the speed of the movements and the frequency of the motor pattern appear smoothly graded. We conclude that fundamentally different principles may underlie the recruitment of motoneuron and interneuron pools. |
format | Text |
id | pubmed-2735137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
record_format | MEDLINE/PubMed |
spelling | pubmed-27351372009-08-31 Continuous shifts in the active set of spinal interneurons during changes in locomotor speed McLean, David L. Masino, Mark A. Koh, Ingrid Y. Y. Lindquist, W. Brent Fetcho, Joseph R. Nat Neurosci Article The classic ‘size principle’ of motor control describes how increasingly forceful movements arise by the recruitment of motoneurons of progressively larger size and force output into the active pool. Here, we explore the activity of pools of spinal interneurons in larval zebrafish and find that increases in swimming speed are not associated with the simple addition of cells to the active pool. Instead, the recruitment of interneurons at faster speeds is accompanied by the silencing of those driving movements at slower speeds. This silencing occurs both between and within classes of rhythmically-active premotor excitatory interneurons. Thus, unlike motoneurons, there is a continuous shift in the set of cells driving the behavior, even though changes in the speed of the movements and the frequency of the motor pattern appear smoothly graded. We conclude that fundamentally different principles may underlie the recruitment of motoneuron and interneuron pools. 2008-11-09 2008-12 /pmc/articles/PMC2735137/ /pubmed/18997790 http://dx.doi.org/10.1038/nn.2225 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article McLean, David L. Masino, Mark A. Koh, Ingrid Y. Y. Lindquist, W. Brent Fetcho, Joseph R. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title | Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title_full | Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title_fullStr | Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title_full_unstemmed | Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title_short | Continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
title_sort | continuous shifts in the active set of spinal interneurons during changes in locomotor speed |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735137/ https://www.ncbi.nlm.nih.gov/pubmed/18997790 http://dx.doi.org/10.1038/nn.2225 |
work_keys_str_mv | AT mcleandavidl continuousshiftsintheactivesetofspinalinterneuronsduringchangesinlocomotorspeed AT masinomarka continuousshiftsintheactivesetofspinalinterneuronsduringchangesinlocomotorspeed AT kohingridyy continuousshiftsintheactivesetofspinalinterneuronsduringchangesinlocomotorspeed AT lindquistwbrent continuousshiftsintheactivesetofspinalinterneuronsduringchangesinlocomotorspeed AT fetchojosephr continuousshiftsintheactivesetofspinalinterneuronsduringchangesinlocomotorspeed |