Cargando…
Bivariate microarray analysis: statistical interpretation of two-channel functional genomics data
Conventional statistical methods for interpreting microarray data require large numbers of replicates in order to provide sufficient levels of sensitivity. We recently described a method for identifying differentially-expressed genes in one-channel microarray data 1. Based on the idea that the varia...
Autores principales: | Hsiao, Albert, Subramaniam, Shankar |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735646/ https://www.ncbi.nlm.nih.gov/pubmed/19680790 http://dx.doi.org/10.1007/s11693-009-9033-8 |
Ejemplares similares
-
VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data
por: Hsiao, Albert, et al.
Publicado: (2005) -
Univariate, bivariate, and multivariate statistics using R: quantitative tools for data analysis and data science
por: Denis, Daniel J
Publicado: (2020) -
A new method for identifying bivariate differential expression in high dimensional microarray data using quadratic discriminant analysis
por: Arevalillo, Jorge M, et al.
Publicado: (2011) -
A Case Study on Choosing Normalization Methods and Test Statistics for Two-Channel Microarray Data
por: Xie, Yang, et al.
Publicado: (2004) -
Interpretation of microarray data in cancer
por: Michiels, S, et al.
Publicado: (2007)