Cargando…
Supervised prediction of drug–target interactions using bipartite local models
Motivation: In silico prediction of drug–target interactions from heterogeneous biological data is critical in the search for drugs for known diseases. This problem is currently being attacked from many different points of view, a strong indication of its current importance. Precisely, being able to...
Autores principales: | Bleakley, Kevin, Yamanishi, Yoshihiro |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735674/ https://www.ncbi.nlm.nih.gov/pubmed/19605421 http://dx.doi.org/10.1093/bioinformatics/btp433 |
Ejemplares similares
-
Drug-target interaction prediction using semi-bipartite graph model and deep learning
por: Eslami Manoochehri, Hafez, et al.
Publicado: (2020) -
DINIES: drug–target interaction network inference engine based on supervised analysis
por: Yamanishi, Yoshihiro, et al.
Publicado: (2014) -
Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers
por: Tabei, Yasuo, et al.
Publicado: (2012) -
Drug target prediction using adverse event report systems: a pharmacogenomic approach
por: Takarabe, Masataka, et al.
Publicado: (2012) -
Relating drug–protein interaction network with drug side effects
por: Mizutani, Sayaka, et al.
Publicado: (2012)