Cargando…
HMM_RA: An Improved Method for Alpha-Helical Transmembrane Protein Topology Prediction
α-helical transmembrane (TM) proteins play important and diverse functional roles in cells. The ability to predict the topology of these proteins is important for identifying functional sites and inferring function of membrane proteins. This paper presents a Hidden Markov Model (referred to as HMM_R...
Autores principales: | Hu, Jing, Yan, Changhui |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735969/ https://www.ncbi.nlm.nih.gov/pubmed/19812766 |
Ejemplares similares
-
Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning
por: Wang, Lei, et al.
Publicado: (2022) -
TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins
por: Liu, Zhe, et al.
Publicado: (2021) -
Improving AlphaFold predicted contacts inalpha-helical transmembrane proteins structuresusing structural features
por: Sawhney, Aman, et al.
Publicado: (2023) -
A Sequential Segment Based Alpha-Helical Transmembrane Protein Alignment Method
por: Wang, Han, et al.
Publicado: (2018) -
MemBrain: Improving the Accuracy of Predicting Transmembrane Helices
por: Shen, Hongbin, et al.
Publicado: (2008)