Cargando…
Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1)
BACKGROUND: Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736162/ https://www.ncbi.nlm.nih.gov/pubmed/19650922 http://dx.doi.org/10.1186/1471-2172-10-44 |
_version_ | 1782171294485184512 |
---|---|
author | Chewning, Joseph H Dugger, Kari J Chaudhuri, Tandra R Zinn, Kurt R Weaver, Casey T |
author_facet | Chewning, Joseph H Dugger, Kari J Chaudhuri, Tandra R Zinn, Kurt R Weaver, Casey T |
author_sort | Chewning, Joseph H |
collection | PubMed |
description | BACKGROUND: Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. RESULTS: We have created a novel transgenic mouse model (T-Lux) using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2(-/-)) recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4(+ )T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4(+ )T cells subsequently underwent a rapid (3–4 day) contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. CONCLUSION: The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4(+ )T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design. |
format | Text |
id | pubmed-2736162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27361622009-09-02 Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) Chewning, Joseph H Dugger, Kari J Chaudhuri, Tandra R Zinn, Kurt R Weaver, Casey T BMC Immunol Research Article BACKGROUND: Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. RESULTS: We have created a novel transgenic mouse model (T-Lux) using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2(-/-)) recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4(+ )T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4(+ )T cells subsequently underwent a rapid (3–4 day) contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. CONCLUSION: The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4(+ )T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design. BioMed Central 2009-08-03 /pmc/articles/PMC2736162/ /pubmed/19650922 http://dx.doi.org/10.1186/1471-2172-10-44 Text en Copyright © 2009 Chewning et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chewning, Joseph H Dugger, Kari J Chaudhuri, Tandra R Zinn, Kurt R Weaver, Casey T Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title | Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title_full | Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title_fullStr | Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title_full_unstemmed | Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title_short | Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model(1) |
title_sort | bioluminescence-based visualization of cd4 t cell dynamics using a t lineage-specific luciferase transgenic model(1) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736162/ https://www.ncbi.nlm.nih.gov/pubmed/19650922 http://dx.doi.org/10.1186/1471-2172-10-44 |
work_keys_str_mv | AT chewningjosephh bioluminescencebasedvisualizationofcd4tcelldynamicsusingatlineagespecificluciferasetransgenicmodel1 AT duggerkarij bioluminescencebasedvisualizationofcd4tcelldynamicsusingatlineagespecificluciferasetransgenicmodel1 AT chaudhuritandrar bioluminescencebasedvisualizationofcd4tcelldynamicsusingatlineagespecificluciferasetransgenicmodel1 AT zinnkurtr bioluminescencebasedvisualizationofcd4tcelldynamicsusingatlineagespecificluciferasetransgenicmodel1 AT weavercaseyt bioluminescencebasedvisualizationofcd4tcelldynamicsusingatlineagespecificluciferasetransgenicmodel1 |