Cargando…

Polymorphisms in MGP gene and their association with lead toxicity

Matrix γ-carboxy glutamic acid protein (MGP) is a 10-kDa secreted protein containing five residues of the vitamin K-dependent calcium binding amino acid γ-carboxyglutamic acid (Gla). This study was carried out to examine the effects of MGP gene promoter polymorphism (T-138C) on blood lead levels (BL...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaik, Abjal Pasha, Jamil, Kaiser
Formato: Texto
Lenguaje:English
Publicado: Informa Healthcare 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736540/
https://www.ncbi.nlm.nih.gov/pubmed/19730704
http://dx.doi.org/10.1080/15376510802488181
Descripción
Sumario:Matrix γ-carboxy glutamic acid protein (MGP) is a 10-kDa secreted protein containing five residues of the vitamin K-dependent calcium binding amino acid γ-carboxyglutamic acid (Gla). This study was carried out to examine the effects of MGP gene promoter polymorphism (T-138C) on blood lead levels (BLL) and hematological parameters in 113 battery manufacturing unit workers occupationally exposed to lead and 102 controls. Genotypes for the MGP T-138C polymorphism were determined by PCR and restriction fragment length digestion. BLL were determined by Anode Stripping Voltammetry using ESA Model 3010B Lead analyzer. Complete blood picture (CBP) was analyzed using ADVIA Cell counter for each sample. The frequencies of MGP–TT, CT and CC genotypes in our population were 38.6%, 44.3%, and 17.2%, respectively. The frequencies for T and C alleles were 0.612 and 0.386, respectively. Although BLL did not differ significantly among genotypes; they were higher in workers with TT/CT genotype compared to CC genotype subjects (76–88 μg/dL vs 22–45 μg/dL, p > 0.05). About 29.2% of volunteers (n = 33) from the occupationally exposed group had hemoglobin levels below 10.0 gms/dl. There was no significant difference in total white cell count and platelet count between occupational and non-exposed groups. The possible role of SNPs in the promoter region of MGP gene with relation to lead toxicity was investigated for the first time in the Indian population; although significance could not be achieved in this study, further assessments over a larger population size may help in better understanding of the consequences of lead exposure.