Cargando…

High-Density Microwell Chip for Culture and Analysis of Stem Cells

With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindström, Sara, Eriksson, Malin, Vazin, Tandis, Sandberg, Julia, Lundeberg, Joakim, Frisén, Jonas, Andersson-Svahn, Helene
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736590/
https://www.ncbi.nlm.nih.gov/pubmed/19750008
http://dx.doi.org/10.1371/journal.pone.0006997
_version_ 1782171350787424256
author Lindström, Sara
Eriksson, Malin
Vazin, Tandis
Sandberg, Julia
Lundeberg, Joakim
Frisén, Jonas
Andersson-Svahn, Helene
author_facet Lindström, Sara
Eriksson, Malin
Vazin, Tandis
Sandberg, Julia
Lundeberg, Joakim
Frisén, Jonas
Andersson-Svahn, Helene
author_sort Lindström, Sara
collection PubMed
description With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field.
format Text
id pubmed-2736590
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-27365902009-09-14 High-Density Microwell Chip for Culture and Analysis of Stem Cells Lindström, Sara Eriksson, Malin Vazin, Tandis Sandberg, Julia Lundeberg, Joakim Frisén, Jonas Andersson-Svahn, Helene PLoS One Research Article With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field. Public Library of Science 2009-09-14 /pmc/articles/PMC2736590/ /pubmed/19750008 http://dx.doi.org/10.1371/journal.pone.0006997 Text en Lindström et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lindström, Sara
Eriksson, Malin
Vazin, Tandis
Sandberg, Julia
Lundeberg, Joakim
Frisén, Jonas
Andersson-Svahn, Helene
High-Density Microwell Chip for Culture and Analysis of Stem Cells
title High-Density Microwell Chip for Culture and Analysis of Stem Cells
title_full High-Density Microwell Chip for Culture and Analysis of Stem Cells
title_fullStr High-Density Microwell Chip for Culture and Analysis of Stem Cells
title_full_unstemmed High-Density Microwell Chip for Culture and Analysis of Stem Cells
title_short High-Density Microwell Chip for Culture and Analysis of Stem Cells
title_sort high-density microwell chip for culture and analysis of stem cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736590/
https://www.ncbi.nlm.nih.gov/pubmed/19750008
http://dx.doi.org/10.1371/journal.pone.0006997
work_keys_str_mv AT lindstromsara highdensitymicrowellchipforcultureandanalysisofstemcells
AT erikssonmalin highdensitymicrowellchipforcultureandanalysisofstemcells
AT vazintandis highdensitymicrowellchipforcultureandanalysisofstemcells
AT sandbergjulia highdensitymicrowellchipforcultureandanalysisofstemcells
AT lundebergjoakim highdensitymicrowellchipforcultureandanalysisofstemcells
AT frisenjonas highdensitymicrowellchipforcultureandanalysisofstemcells
AT anderssonsvahnhelene highdensitymicrowellchipforcultureandanalysisofstemcells