Cargando…

Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression

The AUXIN RESPONSE FACTORs (ARFs) and the Aux/IAA proteins regulate various auxin responses through auxin perception mediated by the F-box proteins TIR1/AFBs. ARFs are transcription factors that modulate expression of auxin response genes and are negatively regulated by the Aux/IAA proteins. To gain...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dong Ju, Park, Jong Wha, Lee, Han Woo, Kim, Jungmook
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736900/
https://www.ncbi.nlm.nih.gov/pubmed/19654206
http://dx.doi.org/10.1093/jxb/erp230
Descripción
Sumario:The AUXIN RESPONSE FACTORs (ARFs) and the Aux/IAA proteins regulate various auxin responses through auxin perception mediated by the F-box proteins TIR1/AFBs. ARFs are transcription factors that modulate expression of auxin response genes and are negatively regulated by the Aux/IAA proteins. To gain insight into the regulatory mechanisms of Aux/IAA-ARF action at the genome level, the transcriptome regulated downstream of iaa1, a stabilized IAA1 mutant protein, was identified using dexamethasone (DEX)-controlled nuclear translocation of iaa1 during the auxin response. The expression of the iaa1-regulated auxin-responsive genes selected from microarray data was analysed with RNA-gel blot analysis and it was shown that auxin-regulated expression of these genes was significantly inhibited by DEX treatment. While cycloheximide-inducible expression of a majority of these genes was also DEX-suppressible, expression of some genes could not be suppressed by treatment with DEX. Expression analysis in a variety of arf mutant backgrounds suggested that all iaa1-regulated auxin-response genes examined are controlled by ARFs to different extents and that the same ARF protein can regulate the expression of these genes in response to auxin in a positive or a negative manner. However, arf mutations did not affect auxin-mediated down-regulation, indicating that ARFs might not play a critical role in down-regulation. The decrease in auxin-responsive gene expression in arf7 arf19 mutants was more severe than that of tir1/afb quadruple mutants. These results show the diversity and complexity of mechanisms of Aux/IAA-ARF- and auxin-regulated gene expression. These data also provide the opportunity for functional analysis of genes mediating the auxin-response downstream of Aux/IAA-ARFs.