Cargando…

Native microRNA loop sequences can improve short hairpin RNA processing for virus gene silencing in animal cells

Introduction of small interfering RNAs (siRNAs) into cells results in transitory silencing of target genes with complementary sequence. Incorporating siRNAs into short-hairpin RNAs (shRNAs) or microRNA-adapted shRNAs (shRNAmir) is a popular tool for targeted gene silencing. shRNAmirs mimicking endog...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinton, Tracey M, Wise, Terry G, Cottee, Pauline A, Doran, Timothy J
Formato: Texto
Lenguaje:English
Publicado: Library Publishing Media 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737240/
https://www.ncbi.nlm.nih.gov/pubmed/19771239
Descripción
Sumario:Introduction of small interfering RNAs (siRNAs) into cells results in transitory silencing of target genes with complementary sequence. Incorporating siRNAs into short-hairpin RNAs (shRNAs) or microRNA-adapted shRNAs (shRNAmir) is a popular tool for targeted gene silencing. shRNAmirs mimicking endogenous pre-microRNAs (unprocessed hairpin microRNAs) are more difficult to design and result in longer RNA molecules. The use of microRNA (miRNA) loop sequences in shRNAs as an alternative to an entire pre-microRNA structure on silencing efficiency has not been studied extensively. This report shows that loop sequences derived from native miRNAs improves the efficiency of silencing due to the processing of the shRNAs into mature siRNAs.