Cargando…
Native microRNA loop sequences can improve short hairpin RNA processing for virus gene silencing in animal cells
Introduction of small interfering RNAs (siRNAs) into cells results in transitory silencing of target genes with complementary sequence. Incorporating siRNAs into short-hairpin RNAs (shRNAs) or microRNA-adapted shRNAs (shRNAmir) is a popular tool for targeted gene silencing. shRNAmirs mimicking endog...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Library Publishing Media
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737240/ https://www.ncbi.nlm.nih.gov/pubmed/19771239 |
Sumario: | Introduction of small interfering RNAs (siRNAs) into cells results in transitory silencing of target genes with complementary sequence. Incorporating siRNAs into short-hairpin RNAs (shRNAs) or microRNA-adapted shRNAs (shRNAmir) is a popular tool for targeted gene silencing. shRNAmirs mimicking endogenous pre-microRNAs (unprocessed hairpin microRNAs) are more difficult to design and result in longer RNA molecules. The use of microRNA (miRNA) loop sequences in shRNAs as an alternative to an entire pre-microRNA structure on silencing efficiency has not been studied extensively. This report shows that loop sequences derived from native miRNAs improves the efficiency of silencing due to the processing of the shRNAs into mature siRNAs. |
---|