Cargando…

Preliminary experience with biodegradable implants for fracture fixation

BACKGROUND: Biodegradable implants were designed to overcome the disadvantages of metal-based internal fixation devices. Although they have been in use for four decades internationally, many surgeons in India continue to be skeptical about the mechanical strength of biodegradable implants, hence thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhillon, Mandeep S, Prabhakar, Sharad, Prasanna, Chandiralingam
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739475/
https://www.ncbi.nlm.nih.gov/pubmed/19753159
http://dx.doi.org/10.4103/0019-5413.41856
Descripción
Sumario:BACKGROUND: Biodegradable implants were designed to overcome the disadvantages of metal-based internal fixation devices. Although they have been in use for four decades internationally, many surgeons in India continue to be skeptical about the mechanical strength of biodegradable implants, hence this study. MATERIALS AND METHODS: A prospective study was done to assess the feasibility and surgeon confidence level with biodegradable implants over a 12-month period in an Indian hospital. Fifteen fractures (intra-articular, metaphyseal or small bone fractures) were fixed with biodegradable implants. The surgeries were randomly scheduled so that different surgeons with different levels of experience could use the implants for fixation. RESULTS: Three fractures (one humeral condyle, two capitulum), were supplemented by additional K-wires fixation. Trans-articular fixator was applied in two distal radius and two pilon fractures where bio-pins alone were used. All fractures united, but in two cases the fracture displaced partially during the healing phase; one fibula due to early walking, and one radius was deemed unstable even after bio-pin and external fixator. CONCLUSIONS: Biodegradable -implants are excellent for carefully selected cases of intra-articular fractures and some small bone fractures. However, limitations for use in long bone fractures persist and no great advantage is gained if a “hybrid” composite is employed. The mechanical properties of biopins and screws in isolation are perceived to be inferior to those of conventional metal implants, leading to low confidence levels regarding the stability of reduced fractures; these implants should be used predominantly in fracture patterns in which internal fixation is subjected to minimal stress.